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Reading assignment 
Chapter 2&3 in BSL 
Chapter 6 in Aris 
 
Equations of motion of a Newtonian fluid 
 We will now substitute the constitutive equation for a Newtonian fluid into 
Cauchy’s equation of motion to derive the Navier-Stokes equation. 
 Cauchy’s equation of motion is 
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The constitutive equation for a Newtonian fluid is 
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The divergence of the rate of deformation tensor needs to be restated with a 
more meaningful expression. 
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Substituting this expression into Cauchy’s equation gives the Navier-Stokes 
equation. 
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The Navier-Stokes equation is sometimes expressed in terms of the 
acceleration by dividing the equation by the density. 
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where ν = µ/ρ and λ′ = λ/ρ.  ν is known as the kinematic viscosity and if Stokes’ 
relation is assumed λ′ + ν = ν/3.  Using the identities 
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the last equation can be modified to give 
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 If the body force f can be expressed as the gradient of a potential 
(conservative body force) and density is a single valued function of pressure 
(piezotropic), the Navier-Stokes equation can be expressed as follows. 
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Assignment 6.1  Do exercises 6.11.1, 6.11.3, and 6.11.4 in Aris. 
 
The Reynolds number 
 Later we will discuss the dimensionless groups resulting from the 
differential equations and boundary conditions.  However, it is instructive to 
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derive the Reynolds number NRe from the Navier-Stokes equation at this point.  
The Reynolds number is the characteristic ratio of the inertial and viscous forces.  
When it is very large the inertial terms dominate the viscous terms and vice versa 
when it is very small.  Its value gives the justification for assumptions of the 
limiting cases of inviscid flow and creeping flow. 
 We will consider the case of single-phase flow with conservative body 
forces (e.g., gravitational) and density a single valued function of pressure.  The 
pressure and potential from the body force can be combined into a single 
potential.   
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If the change in density is small enough, the potential can be approximated by 
potential that has the units of pressure. 
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Suppose that the flow is characterized by a certain linear dimension, L, a 

velocity U, and a density ρ.  For example, if we consider the steady flow past an 
obstacle, L may be it’s diameter and U and ρ the velocity and density far from the 
obstacle.  We can make the variables dimensionless with the following 
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The conservative body force, Navier-Stokes equation is made dimensionless with 
these variables. 
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 The Reynolds number partitions the Navier –Stokes equation into two 
parts.  The left side or inertial and potential terms, which dominates for large NRe 
and the right side or viscous terms, which dominates for small NRe.  The potential 
gradient term could have been on the right side if the dimensionless pressure 
was defined differently, i.e., normalized with respect to (µU)/L, the shear stress 
rather than kinetic energy.  Note that the left side has only first derivatives of the 
spatial variables while the right side has second derivatives.  We will see later 
that the left side may dominate for flow far from solid objects but the right side 
becomes important in the vicinity of solid surfaces. 
 The nature of the flow field can also be seen form the definition of the 
Reynolds number.  The second expression is the ratio of the characteristic kinetic 
energy and the shear stress. 
 The alternate form of the dimensionless Navier-Stokes equation with the 
other definition of dimensionless pressure is as follows. 
 

 

2
Re ( / 1)

/

DN P
Dt

PP
U L

λ µ

µ

∗
∗ ∗∗ ∗ ∗ ∗ ∗

∗

∗∗

= −∇ + + ∇ Θ +∇

=

v v
 

 
Dissipation of Energy by Viscous Forces 
 If there was no dissipation of mechanical energy during fluid motion then 
kinetic energy and potential energy can be exchanged but the change in the sum 
of kinetic and potential energy would be equal to the work done to the system.  
However, viscous effects result in irreversible conversion of mechanical energy 
to internal energy or heat.  This is known as viscous dissipation of energy.  We 
will identify the components of mechanical energy in a flowing system before 
embarking on a total energy balance. 
 The rate that work W is done on fluid in a material volume V with a surface 
S is the integral of the product of velocity and the force at the surface. 
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The last integrand is rather complicated and is better treated with index notation. 
 

  

, , ,

,

2

,

( )

1
2

i ij j ij i j i ij j

i
ij i j i i

ij i j i i

v T T v v T

DvT v v f
Dt

DvT v f v
Dt

ρ ρ

ρ ρ

= +

⎡ ⎤= + −⎢ ⎥⎣ ⎦

= + −

 

  ( )
21

2
Dv
Dt

ρ ρ∇• • = ∇ + − •v T T : v f v  

 
We made use of Cauchy’s equation of motion to substitute for the divergence of 
the stress tensor.  The integrals can be rearranged as follows. 
 

 ( )

2
2

2

,

1 1
2 2

( )

1
2

where

V V

V V V

ij i j

d Dvv dV dV
dt Dt

dV dV dV

Dv
Dt

T v

ρ ρ

ρ

ρ ρ

=

= • + ∇• • − ∇

= • +∇• • − ∇

∇ =

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫ ∫∫∫f v v T T : v

f v v T T : v

T : v

 

 
The left-hand term can be identified to be the rate of change of kinetic energy.  
The first term on the right-hand side is the rate of change of potential energy due 
to body forces.  The second term is the rate at which surface stresses do work on 
the material volume.  We will now focus attention on the last term. 
 The last term is the double contracted product of the stress tensor with the 
velocity gradient tensor.  Recall that the stress tensor is symmetric for a nonpolar 
fluid and the velocity gradient tensor can be split into symmetric and 
antisymmetric parts.  The double contract product of a symmetric tensor with an 
antisymmetric tensor is zero.  Thus the last term can be expressed as a double 
contracted product of the stress tensor with the rate of deformation tensor.  We 
will use the expression for the stress of a Newtonian fluid. 
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where Φ is the second invariant of the rate of deformation tensor.  Thus the rate 
at which kinetic energy per unit volume changes due to the internal stresses is 
divided into two parts: 
(i) a reversible interchange with strain energy, ( / )( / )p p D Dtρ ρΘ = − , 
(ii) a dissipation by viscous forces, 

2( 2 ) 4λ µ µ⎡ ⎤− + Θ − Φ⎣ ⎦  

Since  is always positive, this last term is always dissipative.  If Stokes’ 
relation is used this term is 
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for incompressible flow it is 
 
 4µ Φ . 
 
(The above equation is sometimes written -4µΦ, where Φ is called the dissipation 
function.  We have reserved the symbol Φ for the second invariant of the rate of 
deformation tensor, which however is proportional to the dissipation function for 
incompressible flow. Υ is the symbol used later for the negative of the 
dissipation by viscous forces.) 
 
The energy equation 
 We need the formulation of the energy equation since up to this point we 
have more unknowns than equations.  In fact we have one continuity equation 
(involving the density and three velocity components), three equations of motion 
(involving in addition the pressure and another thermodynamic variable, say the 
temperature) giving four equations in six unknowns.  We also have an equation 
of state, which in incompressible flow asserts that ρ is a constant reducing the 
number of unknowns to five.  In the compressible case it is a relation  
 
 ( , )f p Tρ =  
 
which increases the number of equations to five.  In either case, there remains a 
gap of one equation, which is filled by the energy equation. 
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 The equations of continuity and motion were derived respectively from the 
principles of conservation of mass and momentum.  We now assert the first law 
of thermodynamics in the form that the increase in total energy (we shall consider 
only kinetic and internal energies) in a material volume is the sum of the heat 
transferred and work done on the volume.  Let q denote the heat flux vector, 
then, since n is the outward normal to the surface, -q•n is the heat flux into the 
volume.  Let U denote the specific internal energy, then the balance expressed 
by the first law of thermodynamics is  
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This may be simplified by subtracting from it the expression we already have for 
the rate of change of kinetic energy, using Reynolds transport theorem, and 
Green’s theorem. 
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Since this is valid for any arbitrary material volume, we have assume continuity of 
the integrand 
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We assume Fourier’s law for the conduction of heat. 
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We assume a Newtonian fluid for the dissipation of energy. 
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Substituting this back into the energy balance we have 
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Physically we see that the internal energy increases with the influx of heat, the 
compression and the viscous dissipation. 
 If we write the equation in the form 
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the left-hand side can be transformed by one of the fundamental thermodynamic 
identities.  For if S is the specific entropy, 
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Substituting this into the last equation for internal energy gives 
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Giving an equation for the rate of change of entropy.  Dividing by T and 
integrating over a material volume gives 
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 The second law of thermodynamics requires that the rate of increase of 
entropy should be no less than the flux of heat divided by temperature.  The 
above equation is consistent with this requirement because the volume integral 
on the right-hand side cannot be negative.  It is zero only if k or ∇T and Υ are 
zero.  This equation also shows that entropy is conserved during flow if the 
thermal conductivity and viscosity are zero. 
 

 0, when 0, and 0DS k
Dt

µ= = =  

 
Assignment 6.2  Do exercises 6.3.1 and 6.3.2 in Aris. 
 
The Effect of Compressibility (Batcehlor, 1967) 
 Isentropic flow.  The condition of zero viscosity and thermal conductivity 
results in conservation of entropy during flow or isentropic flow.  This ideal 
condition is useful for illustration the effect of compressibility on fluid dynamics.  
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The conservation of entropy during flow implies that density, pressure, and 
temperature is changing in a reversible manner during flow.  The relation 
between entropy, density, temperature, and pressure is given by 
thermodynamics. 
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These relations may be combined with the condition that the material derivative 
of entropy is zero to obtain a relation between temperature and pressure during 
flow. 
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The equation of state expresses the density as a function of temperature and 
pressure.  During isentropic flow the pressure and temperature are not 
independent but are constrained by constant entropy or adiabatic compression 
and expansion.  The density in this case is given as  
 
 ( , )p Sρ ρ=  
 
We now have as many equations as unknowns and the system can be 
determined.  The simplifying feature of isentropic flow is that exchanges between 
the internal energy and other forms of energy are reversible, and internal energy 
and temperature play passive roles, merely changing in response to the 
compression of a material element. 
 The continuity equation and equation of motion governing isotropic flow 
may now be expressed as follows. 
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 The physical significance of the parameter c, which has the dimensions of 
velocity, may be seen in the following way.  Suppose that a mass of fluid of 
uniform density ρo is initially at rest, in equilibrium, so that the pressure po is 
given by 
 
 o op ρ∇ = f . 
 

The fluid is then disturbed slightly (all changes being isentropic), by some 
material being compressed and their density changed by small amounts, and is 
subsequently allowed to return freely to equilibrium and to oscillate about it.  (The 
fluid is elastic, and so no energy is dissipated, so oscillations about the 
equilibrium are to be expected.)  The perturbation quantities ρ1 (= ρ - ρo) and p1 
(= p - po) and v are all small in magnitude and a consistent approximation to the 
continuity equation and equations of motion is 
 

 

1
2

1 1

1 0o
o

o

p
tc

p
t

ρ

ρ ρ

∂
+ ∇• =

∂

∂
= −∇

∂

v

v f
 

 
where co is the value of c at ρ = ρo .  On eliminating v we have 
 

 
2

21 1
1 12 22

1

o o

p pp
tc c

ρ∂ •
= ∇ − ∇• −

∂
ff ∇  

 
The body forces commonly arise from the earth’s gravitational field, in which 
case the divergence is zero and the last term is negligible except in the unlikely 
event of a length scale of the pressure variation not being small compared with 
co

2/g (which is about 1.2 × 104 m for air under normal conditions and is even 
larger for water).  Thus under these conditions the above equation reduces to the 
wave equation for p1 and ρ1 satisfies the same equation.  The solutions of this 
equation represents plane compression waves, which propagate with velocity co 
and in which the fluid velocity v is parallel to the direction of propagation.  In 
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another words, co is the speed of propagation of sound waves in a fluid whose 
undisturbed density is ρo.  
 
Conditions for the velocity distribution to be approximately solenoidal.  The 
assumption of solenoidal or incompressible fluid flow is often made without a 
rigorous justification for the assumption.  We will now reexamine this assumption 
and make use of the results of the previous section to express the conditions for 
solenoidal flow in terms of identifiable dimensionless groups. 
 The condition of solenoidal flow corresponds to the divergence of the 
velocity field vanishing everywhere.  We need to characterize the flow field by a 
characteristic value of the change in velocity U with respect to both position and 
time and a characteristic length scale over which the velocity changes L.  The 
spatial derivatives of the velocity then is of the order of U/L.  The velocity 
distribution can be said to be approximately solenoidal if 
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For a homogeneous fluid we may choose ρ and the entropy per unit mass S as 
the two independent parameters of state, in which case the rate of change of 
pressure experienced by a material element can be expressed as  
 

 
( )

2

,p p S

Dp D p DSc
Dt Dt S Dtρ

ρ

ρ

=

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠

. 

 
The condition that the velocity field should be approximately solenoidal is 
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 This condition will normally be satisfied only if each of the two terms on 
the left-hand side has a magnitude small compared with U/L.  We will now 
examine each of these terms. 
I. When the condition  
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is satisfied, the changes in density of a material element due to pressure 
variations are negligible, i.e., the fluid is behaving as if it were incompressible.  
This is by far the more practically important of the two requirements for v to be a 
solenoidal vector field.  In estimating /Dp Dt  we shall lose little generality by 
assuming the flow to be isentropic, because the effects of viscosity and thermal 
conductivity are normally to modify the distribution of pressure rather than to 
control the magnitude of pressure variation.  We may then rewrite the last 
equation with the aid of equations of motion of an isentropic fluid derived in the 
last section. 
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Showing that in general three separate conditions, viz. that each term on the left-
hand side should have a magnitude small compared with U/L if the flow field is to 
be incompressible. 
 I (i).  Consider first the last term on the left-hand side of the above 
equation.  The order of magnitude of Dv2/Dt will be the same as that of ∂v2∂/t or 
v•∇v2 (i.e., U3/L), which ever is greater.  Thus the condition arising from this term 
can be expressed as 
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 I (ii)  The magnitude of the partial derivative of pressure with respect to 
time depends directly on the unsteadiness of the flow.  Let us suppose that the 
flow field is oscillatory and that ν is a measure of the dominant frequency.  The 
rate of change of momentum is then the order of ρUν.  Since the pressure 
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gradient is the order of the rate of change of momentum, the spatial pressure 
variation over a region of length L is ρLUν.  Since the pressure is also oscillating, 
the magnitude of ∂p/∂t is then ρLUν2.  Thus the condition that the first term be 
small compared to U/L is  
 

 
2 2

2 1L
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ν
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This condition is equivalent to the condition that the length of the system should 
be small enough that a pressure transient due to compression is felt 
instantaneously throughout the system. 
 I(iii) If we regard the body forces arising from gravity, the term from the 
body forces, v•f/c2, has a magnitude of order gU/c2, so the condition that it be 
small compared to U/L is  
 

 2 1g L
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In the case of air, we can use the isoentropic equation of state to find 
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This shows that the condition is satisfied provided the difference between the 
static-fluid pressure at two points at vertical distance L apart is a small fraction of 
the absolute pressure, i.e., provided the length scale L characteristic of the 
velocity distribution is small compared to p/ρg, the ‘scale height’ of the 
atmosphere, which is about 8.4 km for air under normal conditions.   
 The fluid will thus behave as if it were incompressible when the three 
conditions I(i), I(ii), and I(iii) are satisfied.  The first is not satisfied in near sonic or 
hypersonic gas dynamics, the second is not satisfied in acoustics, and the third is 
not satisfied dynamical meteorology. 
 II.  The second condition necessary for incompressible flow is that arising 
from entropy.  This condition requires that variation of density of a material 
element due to internal dissipative heating or due to molecular conduction of heat 
into the element be small.  We will show later how the small variation of density 
leading to natural convection can be allowed by yet assume incompressible flow. 
 
Resume of the development of the equations 
 We have now obtained a sufficient number of equations to match the 
number of unknown quantities in the flow of a fluid.  This does not mean that we 
can solve them nor even that the solution will exists, but it certainly a necessary 
beginning.  It will be well to review the principles that have been used and the 
assumptions that have been made. 
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 The foundation of the study of fluid motion lies in kinematics, the analysis 
of motion and deformations without reference to the forces that are brought into 
play.  To this we added the concept of mass and the principle of the conservation 
of mass, which leads to the equation of continuity,  
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∂
v v  

 
An analysis of the nature of stress allows us to set up a stress tensor, which 
together with the principle of conservation of linear momentum gives the 
equations of motion 
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If the conservation of moment of momentum is assumed, it follows that the stress 
tensor is symmetric, but it is equally permissible to hypothesize the symmetry of 
the stress tensor and deduce the conservation moment of momentum.  For a 
certain class of fluids however (hereafter called polar fluids) the stress tensor is 
not symmetric and there may be an internal angular momentum as well as the 
external moment of momentum. 
 As yet nothing has been said as to the constitution of the fluid and certain 
assumptions have to be made as to its behavior.  In particular we have noticed 
that the hypothesis of Stokes that leads to the constitutive equation of a 
Stokesian fluid (not-elastic) and the linear Stokesian fluid which is the Newtonian 
fluid. 
 

 
( ) , Stokesian fluid

( ) 2 , Newtonian fluid
ij ij ij ik kj

ij ij ij

T p e e e

T p e

α δ β γ

λ δ µ

= − + + +

= − + Θ +
. 

 
The coefficients in these equations are functions only of the invariants of the rate 
of deformation tensor and of the thermodynamic state.  The latter may be 
specified by two thermodynamic variables and the nature of the fluid is involved 
in the equation of state, of which one form is  
 
 ( , )f p Tρ = . 
 
 If we substitute the constitutive equation of a Newtonian fluid into the 
equations of motion, we have the Navier-Stokes equation. 
 

 2( ) ( )D p
Dt

ρ ρ λ µ µ= −∇ + + ∇ ∇• + ∇
v f v v  
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 Finally, the principle of the conservation of energy is used to give an 
energy equation.  In this, certain assumptions have to be made as to the energy 
transfer and we have only considered the conduction of heat, giving 
 

 ( ) ( )DU k T p
Dt

ρ = ∇• ∇ − ∇• + Υv  

 
 These equations are both too general and too special.  They are too 
general in the sense that they have to be simplified still further before any large 
body of results can emerge.  They are too special in the sense that we have 
made some rather restrictive assumptions on the way, excluding for example 
elastic and electromagnetic effects.   
 
Special cases of the equations 
 The full equations may be specialized is several ways, of which we shall 
consider the following: 
(i) restrictions on the type of motions, 
(ii) specializations on the equations of motion, 
(iii) specializations of the constitutive equation or equation of state. 
This classification is not the only one and the classes will be seen to overlap.  We 
shall give a selection of examples and of the resulting equations, but the list is by 
no means exhaustive. 
 Under the first heading we have any of the specializations of the velocity 
as a vector field.  These are essentially kinematic restrictions.   
 
(ia) Isochoric motion.  (i.e., constant density) The velocity field is solenoidal 
 

 1 0D
Dt
ρ

ρ
− = ∇• = Θv =  

 
The equation of continuity now gives 
 

 0D
Dt
ρ
= , 

 
that is, the density does not change following the motion.  This does not mean 
that it is uniform, though, if the fluid is incompressible, the motion is isochoric.  
The other equations simplify in this case for we have α, β, and γ of the 
constitutive equations functions of only Φ and Ψ of the invariants of the rate of 
deformation tensor.  In particular for a Newtonian fluid 
 

 
2

2ij ij ijT p e

D p
Dt

δ µ

ρ ρ µ

= − +

= −∇ + ∇
v f v
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The energy equation is 
 

 ( )DU k T
Dt

ρ = ∇• ∇ +Υ , 

 
and for a Newtonian fluid 
 
 4µΥ = − Φ . 
 

Because the velocity field is solenoidal, the velocity can be expressed as 
the curl of a vector potential. 
 
 . = ∇×v A
 
The Laplacian of the vector potential can be expressed in terms of the vorticity. 
 

  2

2

( )
( )

, if

= ∇×
= ∇× ∇×

= ∇ ∇• −∇

= −∇ ∇• =

w v
A

A A
A A 0

 
If the body force is conservative, i.e., gradient of a scalar, the body force and 
pressure can be eliminated from the Navier-Stokes equation by taking the curl of 
the equation. 
 

 2D
Dt

ν= •∇ + ∇
w w v w  

 
where ν is the kinematic viscosity. 
 Isochoric motion is a restriction that has to be justified.  Because it is 
justified in so many cases, it is easier to identify the cases when it does not 
apply.  We showed during the discussion of the effects of compressibility that 
compressibility or non-isochoric is important in the cases of significant Mach 
number, high frequency oscillations such as in acoustics, large dimensions such 
as in meteorology, and motions with significant viscous or compressive heating. 
 
(ib) Irrotational motion.  The velocity field is irrotational 
 
  0= ∇× =w v
 
It follows that there exists a velocity potential ϕ(x,t) from which the velocity can 
be derived as  
 
 ϕ= ∇v  
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and in place of the three components of velocity we seek only one scalar 
function.  (Note that some authors express the velocity as the gradient of a scalar 
and others as the negative of a gradient of a scalar.  We will use either to 
conform to the book from which it was extracted.)  The continuity equation 
becomes 
 

 2 0D
Dt
ρ ρ ϕ+ ∇ =  

 
so that for an isochoric (or incompressible), irrotational motion, ϕ is a potential 
function satisfying 
 
 . 2 0ϕ∇ =
 
The Navier-Stokes equations become 
 

 2 21 1( ) ( 2 ) (
2

p
t
ϕ )ϕ λ ν ϕ

ρ
∂⎡ ⎤ ′∇ + ∇ = − ∇ + + ∇ ∇⎢ ⎥∂⎣ ⎦

f . 

 
In the case of an irrotational body force = −∇Ωf  and when p is a function only of 
ρ, this has an immediate first integral since every term is a gradient.  Thus if 

( ) /P dpρ ρ= ∫  , 
 

 2 21 ( ) ( ) ( 2 ) (
2

P g
t

)tϕ ϕ ρ λ ν ϕ∂ ′+ ∇ +Ω+ − + ∇ =
∂

 

 
is a function of time only. 
 Irrotational motions with finite viscosity are only very special motions 
because the no-slip boundary conditions on solid surfaces usually will cause 
generation of rotation.  Usually irrotational motion is associated with inviscid 
fluids because the no-slip boundary condition then will not apply and initially 
irrotational motion will remain irrotational. 
 
(ic)  Complex lamellar motions, Betrami motions, ect.  These names can be 
applied when the velocity field is of this type.  Various simplifications are possible 
by expressing the velocity in terms of scalar fields.  We shall not discuss them 
further here. 
 
(id) Plane flow.  Here the motion is restricted to two dimensions which may be 
taken to be the 012 plane.  Then v3 = 0 and x3 does not occur in the equations.  
Also, the vector potential and the vorticity have only one nonzero component. 
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 Incompressible plane flow.  Since the flow is solenoidal, the velocity can 
be expressed as the curl of the vector potential.  The nonzero component of the 
vector potential is the stream function. 
  

 3 3, ,

1 2 3
2 1

( , , ) , , 0

i ij j ij jv A

v v v
x x

ε ε ψ

ψ ψ

= ∇×
= =

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

v A
 

 
The vorticity has only a single component, that in the 03 direction, which we will 
write without suffix 
 

 
,

2 1

1 2
2

, , 1, 2i ijk k jw v j k
v vw
x x

ε

ψ

= ∇×
= =

∂ ∂
= −
∂ ∂

= −∇

w v

. 

 
If the body force is conservative, i.e., gradient of a scalar, then the body force 
and pressure disappear from the Navier-Stokes equation upon taking the curl of 
the equations.  In plane flow 
 

 2Dw w
Dt

ν= ∇  

 
Thus for incompressible, plane flow with conservative body forces, the continuity 
equation and equations of motion reduce to two scalar equations. 
 Incompressible, irrotational plane motion.  A vector field that is irrotational 
can be expressed as the gradient of a scalar.  Since the flow is incompressible, 
the velocity vector field is solenoidal and the Laplacian of the scalar is zero, i.e., it 
is harmonic or an analytical function. 
 

 
2

0
ϕ

ϕ

= ∇
∇• =

= ∇

v
v  

 
Since the flow is incompressible, it also can be expressed as the curl of the 
vector potential, or in plane flow as derivatives of the stream function as above.  
Since the flow is irrotational, the vorticity is zero and the stream function is also 
an analytical function, i.e., ( )2 2, 0 , 0ψ= ∇× = = ∇× = −∇ +∇ ∇• ⇒∇ =v A w v A A .  
Thus 
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1

1 2

2
2 1

v
x x

v
x x

ϕ ψ

ϕ ψ

∂ ∂
= =
∂ ∂
∂ ∂

= = −
∂ ∂

 

 
These relations are the Cauchy-Riemann relations show that the complex 
function f iϕ ψ= +  is an analytical function of 1z x i x2= + .  The whole resources 
of the theory of functions of a complex variable are thus available and many 
solutions are known. 
 Steady, plane flow.  If the fluid is compressible but the flow is steady (i.e., 
no quantity depends on t) the equation of continuity becomes 
 

 1 2

1 2

( ) ( ) 0v v
x x
ρ ρ∂ ∂

+ =
∂ ∂

 

 
A stream function can again be introduced, this time in the form 
 

 1 2
2 1

1 1,v v
x x
ψ ψ

ρ ρ
∂ ∂

= = −
∂ ∂

. 

 
The vorticity is now given by 
 

 2w ψ ρρ ψ
ρ

∇ •∇
= −∇ +  

 
(ie)  Axisymmetric flows.  Here the flow has an axis of symmetry such that the 
flow field can be expressed as a function of only two coordinates by using 
curvilinear coordinates.  The curl of the vector potential and velocity has only one 
non-zero component and a stream function can be found. 
 
(if)  Parallel flow perpendicular to velocity gradient.  If the flow is parallel, i.e., the 
streamlines are parallel and are perpendicular to the velocity gradient, then the 
equations of motion become linear in velocity if the fluid is Newtonian. 
 

 
If 0, then , andD

Dt t

t
ρ

∂
•∇ = =

∂
∂

= +∇•
∂

v vv v

v f T
 

 
 The second type of specializations are limiting cases of the equations of 
motion. 
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 (iia) Hydrostatics.  When there is no flow, the only non-zero terms in the 
equations of motion are the body forces and pressure gradient. 
 
 pρ = ∇f . 
 
If the body force is conservative, i.e., the gradient of a scalar, then the hydrostatic 
pressure can be determined from this scalar. 
 

 
( ) 0

constant
where

p

p

dp

ρ

ρ

= ∇Ω
∇ = ∇Ω
∇ Φ−Ω =
Φ = Ω+

Φ = ∫

f

 

 
If the body force is due to gravity then 
 
  g zΩ =
 
where z is the elevation above a datum such as the mean sea level. 
 
(iib) Steady flow.  Examples of this have already been given and indeed it might 
have been considered as a restriction of the first class.  All partial derivatives with 
respect to time vanish and the material derivative reduce to the following 
 

 D
Dt

= •∇v . 

 
In particular, the continuity equation is 
 
 ( ) 0ρ∇• =v  
 
so that the mass flux field is solenoidal. 
 
(iic) Creeping flow.  It is sometimes justifiable to assume that the velocity is so 
small that the square of velocity is negligible by comparison with the velocity 
itself.  This linearizes the equations and allows them to be solved more readily.  
For example, the Navier-Stokes equation becomes 
 

 2( ) ( )p
t

ρ λ µ∂
= −∇ + + ∇ ∇• + ∇

∂
v f v µ v . 
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In particular, for steady, incompressible, creeping flow with conservative body 
forces 
 

 . 

2

where
P

P p g z

µ

ρ

∇ = ∇

= −

v

 
However, since the continuity equation is ∇•v = 0, we have 
 
  2 0P∇ =
 
or P is a harmonic potential function.  This is the starting point for Stokes’ 
solution of the creeping flow about a sphere and for its various improvements. 
 One may ask, “How small must the velocity be in order to neglect the 
nonlinear terms?”  To answer this question, we need to examine the value of the 
Reynolds number.  However, this time the pressure and body forces will be made 
dimensionless with respect to the shear forces rather than the kinetic energy. 
 

 
**

2 2 2

, , ,
/

,

U Pt t P
U L L U
L L

µ
∗ ∗ ∗

∗ ∗

= = = =

∇ = ∇ ∇ = ∇

v xv x
L  

 
The dimensionless Navier-Stokes equation for incompressible flow is now as 
follows 
 

 

** 2
Re

2

Re

where

/

DN P
Dt

U L UN
U L

ρ ρ
µ µ

∗
∗ ∗

∗ = −∇ +∇

= =

v v∗

. 

 
Creeping flow is justified if the Reynolds number is small enough to neglect the 
left-hand side of the above equation.  If the dimensionless variables and their 
derivatives are the order of unity, then creeping flow is justified if the Reynolds 
number is small compared to unity. 
 Another specialization of the equations of motion where the equations are 
made linear arises in stability theory when the basic flow is known but perturbed 
by a small amount.  Here it is the squares and products of small perturbations 
that are regarded as negligible. 
 
(iid) Inertial flow.  The flow is said to be inviscid when the inertial terms are 
dominant and the terms with viscosity in the equations of motion can be 
neglected.  We can examine the conditions when this may be justified from the 
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dimensionless equations of motion with the pressure and body forces normalized 
with respect to the kinetic energy. 
 

 

2
Re

2

Re

2

( / 1)

where

/

DN P
Dt

U L UN
U L

PP
U

λ µ

ρ ρ
µ µ

ρ

∗
∗ ∗ ∗ ∗ ∗ ∗

∗

∗

⎡ ⎤
+∇ = + ∇ Θ +∇⎢ ⎥

⎣ ⎦

= =

=

v v

 

 
The limit of inviscid flow may occur when the Reynolds number is becomes very 
large such that the right-hand side of the above equation is negligible.  Notice 
that if the right-hand side of the equation vanishes, the equation goes from being 
second order in spatial derivatives to first order.  The differential equation goes 
from being parabolic to being hyperbolic and the number of possible boundary 
condition decreases.  The no-slip boundary condition at solid surfaces can no 
longer apply for inviscid flow.  These types of problems are known as singular 
perturbation problems where the differential equations are first order except near 
boundaries where they become second order.  Physically, the form drag 
dominates the skin friction in inertial flow.  The macroscopic momentum balance 
is described by Bernoulli theorems. 
 Notice that inviscid flow is necessary for irrotational flow past solid objects 
but inviscid flow may be rotational.  If fact much of the classical fluid dynamics of 
vorticity is based on inviscid flow. 
 
(iie) Boundary-layer flows.  Ideal fluid or inviscid flow may be assumed far from 
an object but real fluids have no-slip boundary conditions on solid surfaces.  The 
result is a boundary-layer of viscous flow with a large vorticity in a thin layer near 
solid surfaces that merges into the ideal fluid flow at some distance from the solid 
surface.  It is possible to neglect certain terms of the equations of motion 
compared to others.  The basic case of steady incompressible flow in two 
dimensions will be outlined.  If a rigid barrier extends along the positive 01 axis 
the velocity components v1 and v2 are both zero there.  In the region distant from 
the axis the flow is v1 = U(x1), v2 ≈ 0, and may be expected to be of the form 
shown in Fig. 6.1, in which v1 differs from U and v2 from zero only within a 
comparatively short distance from the plate.  To express this we suppose L is a 
typical dimension along the plate and δ a typical dimension of this boundary layer 
and that V1 and V2 are typical velocities of the order of magnitude of v1 and v2.  
We then introduce dimensionless variables 
 

 x x
L

y x u v
V

v v
V

* * * *, , ,= = = =1 2 1

1

2

2δ
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which will be of the order of unity.  This in effect is a stretching upward of the 
coordinates so that we can compare orders of magnitude of the various terms in 
the equations of motion, for now all dimensionless quantities will be of order of 
unity.  It is assumed that δ << L, but the circumstances under which this is valid 
will become apparent later.  It is also assumed that the functions are reasonably 
smooth and no vast variations of gradient occur. 
 The equation of continuity becomes 
 

 
* *

1 2
* * 0V u V v

L x yδ
∂ ∂

+ =
∂ ∂

 

 
which would lose its meaning if one of these terms were completely negligible in 
comparison with the other.  It follows that 
 

 2 1V O V
L
δ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

 
where the symbol O means "is of the order of."  The Navier-Stokes equations 
become 
 

 

2 * * * 2 * 2
* *1 1 2 1

* * * 2 *2 2

* 2 * * 2 2 * 2 *
* *1 2 2 2

* * * 2 2 *2

and

o

o

pV u V V u p V u L uu v
L x y L x L x y

pV V v V v p V v vu v
L x y y L x y

ν
δ ρ δ

δν
δ ρδ δ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

2 *

*2

*2

∂

 

 
In the first of these equations the last term on the right-hand side dominates the 
Laplacian and ∂2u*/∂x*2 can be neglected.  Dividing through by V1

2/L we see that 
the other terms will be of the same order of magnitude provided 
 

 2
1 2

1

and (1)o
Lp V O

V
νρ

δ
= = . 

 
Inserting these orders of magnitude in the second equation and the condition that 
δ << L results in the pressure gradient ∂p/∂y being the dominant term.  Thus p is 
a function of x only.  Returning to the original variables, we have the equations 
 

 

1 2

1 2
2

1 1
1 2 2

1 2

0

1

v v
x x

v v dpv v 1

2

v
x x dx

ν
ρ

∂ ∂
+ =

∂ ∂

∂ ∂ ∂
+ = − +

∂ ∂ ∂x

. 
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The circumstances under which these simplified equations are valid are given by 
the term above that we assumed to be of order of unity, which we rewrite as 
 

 
1

O
L V L
δ ν⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. 

 
Since it was assumed that δ << L this equation shows that this will be the case if 

1V Lν << .  The assumption that the pressure is O(ρ V1
2) is consistent with the 

assumption that the outer flow is inertial denominated flow. 
 
(iif)  Lubrication and film flow.  Lubrication and film flow is another case where 
one dimension is small compared to the other dimensions.  Lubrication flow is 
usually between two solid surfaces with the relative velocity between the two 
surfaces specified.  Film flow is usually between a solid and fluid surfaces or 
between two fluid interfaces and the driving force for flow is usually buoyancy or 
the Laplace pressure between curved interfaces.  Because of the one dimension 
being small, lubrication and film flow is about always at low Reynolds numbers. 
 The equations of motion are specialized by normalizing the variables with 
characteristic quantities of the flow and dropping the terms that are negligible.  
Incompressible flow with low Reynolds number of a Newtonian fluid is assumed.  
Let the direction normal to the film be the 03 direction.  The double subscript, 12, 
will be used to denote the two coordinate directions in the plane of the film.  Let 
ho be a characteristic film thickness and L be a characteristic dimension in the 
plane of the film and ho/L << 1.  The variables are normalized to be order of unity. 
 

 

* * * *312
12 3

* * *312
12 3

, , ,

, ,

where

or f

o o o

o

o o

o o o
o

xx h tx x h t
L h h t

v tv p gv v P
U h P

U LP g L P or P

z

R L h

ρ

σ µρ

= = = =

−∆
= = =

⎛ ⎞
= ∆ = = ⎜ ⎟

⎝ ⎠

 

 
The film boundaries are material surfaces and the velocity perpendicular to the 
plane of the film is the rate of change of film thickness. 
 

 
3

*

*

h

o

o

hv
t

h h
t t

∂
=
∂
∂

=
∂

 

 
Substitution into the integral of the equation of continuity result in the following. 
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3
3 3 0

30

12 12
3

12 120

* * *
12

* *
12

( ) ( / )

( ) ( / )

h
h

h

o

o
o

v dx v
x

v hvdx O h L
x x

h v L h O h L
x U t t

∂
=

∂

∂ ∂
= +

∂ ∂

⎡ ⎤∂ ∂
+ =⎢ ⎥∂ ∂⎣ ⎦

∫

∫  

 
The characteristic time can be chosen as to make the dimensionless group equal 
to unity. 
 

 o
Lt
U

=  

 
 The dimensionless variables can now be substituted into the equations of 
motion for zero Reynolds number with gravitational body force and Newtonian 
fluid.  For the components in the plane of the film, 
 

 
2 *

* * *2 * 12
12 12 12 2 *

3

0
o o o

U U LP v
P L P h x
µ µ⎡ ⎤ ⎡ ⎤ ∂

= −∇ + ∇ +⎢ ⎥ ⎢ ⎥ 2

v
∂⎣ ⎦ ⎣ ⎦

 

 
The dimensionless group in the last term can be made equal to unity because of 
the two characteristic quantities, Po and U, only one is specified and the other 
can be determined from the first. 
 

 

2

2

2

1

and

, or

o o

o o
o

o

U L
P h

P h L UU P
L h

µ

µ
µ

=

= =

 

 
The equations of motion in the plane of the film is now 
 

 
2 *

* * 212
12 *2

3

0 ( o
vP O h
x

∂
= −∇ + +

∂
/ )L  

 
The dimensionless variables can now be substituted into the equation of motion 
perpendicular to the plane of the film. 
 

 6 - 26



 

24 2 **
*2 * 3
12 3* 2 2

3 3

*
2

*
3

0

0 ( / )

o o

o o o o

o

h hP U L U Lv *2

v
x P h L P h L x

P O h L
x

µ µ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ∂∂ ⎡ ⎤= − + ∇ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
∂

= − +
∂

 

 
This last equation shows that the pressure is approximately uniform over the 
thickness of the film.  Thus the velocity profile of  can be determined by 
integrating the equation of motion in the plane of the film twice and applying the 
appropriate boundary conditions.  The average velocity in the film can be 
determined by integrating the velocity profile across the film. 

*
12v

 
 Certain of the specializations based on the constitutive equation or 
equation of state have turned up already in the previous cases.  We mention 
here a few important cases. 
 
(iiia)  Incompressible fluid.  An incompressible fluid is always isochoric and the 
considerations of (ia) apply.  It should be remembered that for an incompressible 
fluid the pressure is not defined thermodynamically, but is an variable of the 
motion. 
 
(iiib) Perfect fluid.  A perfect fluid has no viscosity so that  
 

 and
p

D p
Dt

ρ ρ

= −

= −∇

T I

v f

. 

 
If, in addition, the fluid has zero conductivity the energy equation becomes 
 

 0DS
Dt

=  

 
and the flow is isentropic. 
 
(iiic) Ideal gas.  An ideal gas is a fluid with the equation of state 
 
 p RTρ= . 
 
The entropy of an ideal gas is given by 
 

 lnv
dTS c R
T

ρ= −∫  
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which for constant specific heats gives 
 
 / vS cp e γρ=  
 
(iiid) Piezotropic fluid and barotropic flow.  When the pressure and density are 
directly related, the fluid is said to be piezotropic.  A simple relation between p 
and ρ allows us to write 
 

 1 ( )
p dpp P ρ

ρ ρ
∇ = ∇ = ∇∫ . 

 
(iiie) Newtonian fluids.  Here the assumption of a linear relation between stress 
and strain leads to the constitutive equation 
 
 ( ) 2p λ µ= − + Θ +T I e . 
 
The equations of motion becomes the Navier-Stokes equations. 
 
Assignment 6.3  Carry out the steps in specializing the continuity and equations 
of motion for boundary layer and lubrication or film flows. 
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Boundary conditions 
The flow field is often desired for a finite region of space that is bounded 

by a surface.  Boundary conditions are needed on these surfaces and at internal 
interfaces for the flow field to be determined.  The boundary conditions for 
temperature and heat flux are continuity of both across internal interfaces that 
are not sources or sinks and either a specified temperature, heat flux, or a 
combination of both at external boundaries.  
 Surfaces of symmetry.  Surfaces of symmetry corresponds to reflection 
boundary conditions where the normal component of the gradient of the 
dependent variables are zero.  Thus surfaces of symmetry have zero momentum 
flux, zero heat flux, and zero mass flux.  Because the momentum flux is zero, the 
shear stress is zero across a surface of symmetry. 

Periodic boundary.  Periodic boundaries are boundaries where the 
dependent variables and its derivatives repeat themselves on opposite 
boundaries.  The boundaries may or may not be symmetry boundary conditions.  
An example of when periodic boundaries are not symmetry boundaries are the 
boundaries of θ = 0 and θ = 2π of a non-symmetric system with cylindrical polar 
coordinate system. 

Solid surfaces.  A solid surface is a material surface and kinematics 
require that the mass flux across the surface to be zero.  This requires the 
normal component of the fluid velocity to be that of the solid.  The tangential 
component of velocity depends on the assumption made about the fluid viscosity.  
If the fluid is assumed to have zero viscosity the order of the equations of motion 
reduce to first order and the tangential components of velocity can not be 
specified.  Viscous fluids stick to solid surfaces and the tangential components of 
velocity is equal to that of the solid.  Exception to the ‘no-slip’ boundary 
conditions is when the mean free path of as gas is similar to the dimensions of 
the solid.  An example is the flow of gas through a fine pore porous media.  

Porous surface.  A porous surface may not be a no-flow boundary.  Flux 
through a porous material is generally described by Darcy’s law. 

Fluid surfaces.  If there is no mass transfer across a fluid-fluid interface, 
the interface is a material surface and the normal component of velocity on either 
side of the interface is equal to the normal component of the velocity of the 
interface.  The tangential component of velocity at a fluid interface is not known 
apriori unless the interface is assumed to be immobile as a result of adsorbed 
materials.  The boundary condition at fluid interfaces is usually jump conditions 
on the normal and tangential components of the stress tensor.  Aris give a 
thorough discussion on the dynamical connection between the surface and its 
surroundings.  If we assume that the interfacial tension is constant and that it is 
possible to neglect the surface density and the coefficients of dilational and shear 
surface viscosity then the jump condition across a fluid-fluid interface is 

[ ]
2

2
ij j iT n H n

H

σ

σ

⎡ ⎤ = −⎣ ⎦
• = −T n n
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where the bracket denotes the jump condition across the interface, H is the mean 
curvature of the interface, and σ is the interfacial or surface tension.  The jump 
condition on the normal component of the stress is the jump in pressure across a 
curved interface given by the Laplace-Young equation.  The tangential 
components of stress are continuous if there are no surface tension gradients 
and surface viscosity.  Thus the tangential stress at the clean interface with an 
inviscid fluid is zero. 
 For boundary conditions at a fluid interface with adsorbed materials and 
thus having interfacial tension gradients and surface viscosity, see Chapter 10 of 
Aris and the thesis of Singh (1996). 
 Boundary conditions for the potentials and vorticity.  Some fluid flow 
problems are more conveniently calculated through the scalar and vector 
potentials and the vorticity.   
 

 2

2

ϕ

ϕ

= −∇ +∇×

∇ = −∇•

∇ = −

v A
v

A w
 

 
The boundary condition on the scalar potential is that the normal derivative is 
equal to the normal component of velocity. 
 

 n
ϕϕ ∂

•∇ ≡
∂

= − •

n

n v
 

 
The boundary condition on the vector potential is that the tangential components 
vanish and the normal derivative of the normal component vanish (Hirasaki and 
Hellums, 1970).  Wong and Reizes (1984) introduced a method where the need 
for calculation of the scaler potential is replaced by the use of an irrotational 
component of velocity. 
 

 
( )

( )

0

0

t

n

n

=

∂
=

∂

A

A  

 
In two dimensional or axisymmetric incompressible flow, it is not 

necessary to have a scalar potential and the single nonzero component of the 
vector potential is the stream function.  The boundary condition on the stream 
function for flow in the x1, x2 plane of Cartesian coordinates is 
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where
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=

n v n A

 

 
The boundary condition on the normal component of the vorticity of a fluid 

with a finite viscosity on a solid surface is determined from the tangential 
components of the velocity of the solid.  It is zero if the solid is not rotating.  If the 
boundary is an interface between two viscous fluids then the normal component 
of vorticity is continuous across the interface (C. Truesdell, 1960).  If the interface 
is with an inviscid fluid, the tangential components of vorticity vanishes and the 
normal derivative of the normal component vanishes for a plane interface 
(Hirasaki, 1967).  

If the boundary is at along a region of space for which the velocity field is 
known, the vorticity can be calculated from the derivatives of the velocity field.   

If the boundary is as surface of symmetry, the tangential components of 
vorticity must vanish because the normal component of velocity and the normal 
derivative of velocity vanish.  The normal derivative of the normal component of 
vorticity vanishes from the solenoidal property of vorticity. 
 
Scaling, Dimensional Analysis, and Similarity 
 We have already seen some examples of scaling and dimensional 
analysis when we determined when the continuity equations and equations of 
motion could be simplified.  The concept of similarity states that the solution of 
transport problems do not need to be determined separately for each value of the 
parameters.  Rather the variables and parameters can be grouped into 
dimensionless variables and dimensionless numbers and the solution will have 
fewer degrees of freedom.  Also, in some cases the partial differential equations 
can have the independent variables combined to fewer independent variables 
and be expressed as ordinary differential equations.  The concept of similarity 
does not apply only to mathematical solutions but is also used to design physical 
analogs of systems on a smaller scale or with different transport mechanism.  For 
example, before numerical simulation the streamlines and pressure gradients for 
flow in petroleum reservoirs were studied by electrical conduction on a laboratory 
scale model that is geometrically similar. 
 Dimensionless groups based on geometry.  The aspect ratio is the ratio of 
the characteristic lengths of the system.  The symbol α is normally used to 
denote the aspect ratio.  We saw how the aspect ratio simplified the equations of 
motion for boundary layer flow and lubrication or film flow.  The table below lists 
some examples of aspect ratio expressions for different problems. 
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Examples of aspect ratio, α 
δ/L boundary layer flow 
ho/L lubrication or film flow 
Ly/Lx width/length 
D/L entrance effects in pipe flow 
Dmax/Dmin eccentricity ratio 
 
 It may be difficult to define the characteristic length of an irregularly 
shaped conduit or object.  The characteristic dimension for an irregular conduit or 
object can be determined by the hydraulic diameter. 
 

 

4 , conduit

4 , 2 D object

6 , 3 D object

x
h

w

w

h

w

AD
P

V
A

D
V

A

=

⎧ −⎪
⎪⎪= ⎨
⎪
⎪ −
⎪⎩

 

 
where Ax and Pw are the cross-sectional area and wetted perimeter of the conduit 
and V and Aw are the volume and wetted area of an object.  The definitions 
reduce to the diameter of a cylinder or sphere for regular objects.  (The reader 
should be aware that some definitions such as the hydraulic radius in BSL may 
not reduce to the dimension of the regular object.)  The hydraulic diameter may 
provide length scales but exact similarity is not satisfied unless the conduits or 
objects are geometrically similar. 
 Dimensionless groups based on equations of motion and energy.  We 
derived earlier the Reynolds number from the equations of motion and 
dimensionless groups from the energy equation when compressibility is 
important.  We will discuss these further and additional dimensionless groups. 
 
Interpretation of the Reynolds number 

U Lρ
µ

 basic definition 

2

/
U

U L
ρ
µ

 
kinetic energy

shear stress
 

2

( )ρ
µ
• ∇

≈
∇

v v
v

 
inertial force
viscous force

 

 
 The Reynolds number can be interpreted as a ratio of kinetic energy to 
shear stress.  We will see later that some of the dimensionless numbers differ by 
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whether it is normalized with respect to the kinetic energy or the shear stress 
term, i.e., it is a product of the Reynolds number and another dimensionless 
number. 
 Suppose the characteristic value of the body force is ρgL and the 
characteristic value of pressure is σ/L , i.e., due to capillary forces.  The 
dimensionless Navier–Stokes equation can be expressed as follows. 
 

 2
2 2

Re

* 1* * * *
*

Dv g L p
Dt U g U L N

σ
ρ

⎡ ⎤⎡ ⎤⎛ ⎞⎡ ⎤= − ∇ + ∇⎢ ⎥⎜ ⎟ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦

f v  

 
We can now define dimensionless groups that include gravity or buoyancy forces 
and gravity forces. 
 
  
Dimensionless groups based on gravity and capillarity 

2 2

Fr
U UN
g L g L

ρ
ρ

= =  
Froude number 

2 2

/We
U L UN

L
ρ ρ
σ σ

= =  
Weber number 

Re
/

/Ca We
U U LN

L
N Nµ µ

σ σ
= = =  capillary number 

2
Re

/ Fr

Ng L g L
U U L N

ρ ρ
µ µ

= =  
gravity number 

2

/
We

Bo
Fr

Ng L g LN
L N

ρ ρ
σ σ

= = =  
Bond number 

 
 We derived scale factors that have to be small in order to neglect the 
effects of compressibility.  They are summarized here. 
 
Dimensionless groups necessary for incompressible flow 

Ma
UN
c

=  Mach number 

L
c
ν  (frequency length)/sonic velocity 

2

g L g L
c p

ρ
γ

=  density change due to body forces 

 
 Friction factor and drag coefficients.  Friction factor and drag coefficients 
are the force on the wall of a conduit or on an object normalized with respect to 
kinetic energy.  There are some ambiguities in the literature that one should be 
aware of. 

 6 - 33



 
Friction factors 
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Bernoulli Theorems 
 When the viscous effects are negligible compared with the inertial forces 
(i.e., large Reynolds number) there are a number of generalizations that can be 
made about the flow.  These are described by the Bernoulli theorems.  The fluid 
is assumed to be inviscid and have zero thermal conduction so that the flow is 
also barotropic (density a single-valued function of pressure).  The first of the 
Bernoulli theorems is derived for flow that may be rotational.  A special case is 
for motions relative to a rotating coordinate system where Coriolis forces arise.  
For irrotational flow, the Bernoulli theorem is a statement of the conservation 
kinetic energy, potential energy, and the expansion energy.  A macroscopic 
energy balance can be made that includes the effects of viscous dissipation and 
the work done by the system. 
 Steady, barotropic flow of an inviscid, nonconducting fluid with 
conservative body forces.  The equations of motion for a Newtonian fluid is  
 

 2( ) ( )D p
Dt

ρ ρ λ µ µ= −∇ + + ∇ ∇• + ∇
v f v v . 

 
The assumptions of steady, inviscid flow simplify the equations to 
 
 ( ) pρ ρ•∇ = −∇v v f . 
 
The assumptions of barotropic flow with conservative body forces allow, 
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, ( )

( ) ( ( ))

p dpp
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ρ
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•∇ = −∇ Ω+Φ

∫f

v v
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and by virtue of the identity 
 
 21

2( ) ( )v•∇ = ∇ + ×v v w v  
 
the equations of motion can be written 
 

 

21
2

21
2

( ( ) )

( )

p v
H

H p v

∇ Ω+Φ + = ×

∇ = ×

≡ Ω+Φ +

v w
v w . 

 
If the body force is gravitational then Ω = ρ g z. 

Let H denote the function of which the gradient occurs on the left-hand 
side of this equation.  ∇H is a vector normal to the surfaces of constant H.  
However, v×w is a vector perpendicular to both v and w so that these vectors are 
tangent to the surface.  However, v and w are tangent to the streamlines and 
vortex lines respectively so that these must lie in a surface of constant H.  It 
follows that H is constant along the streamlines and vortex lines.  The surfaces of 
constant H which are crossed with this network of stream and vortex lines are 
known as Lamb surfaces and are illustrated in Fig. 6.2. 
 Coriolis force.  Suppose that the motion is steady relative to a steadily 
rotating axis with an angular velocity, ω.  Batchelor (1967) derives the equations 
of motion in this rotating frame and shows that we must now include the potential 
from the centrifugal force and the addition of a Coriolis force term. 
 

 2
21

2

( 2 )
( )( )

2

H

H p v

ω

ω

∇ = × +

×
≡ Ω+Φ + −

v w
x  

 
 Irrotational flow.  If the flow is also irrotational, then w = 0 and hence the 
energy function 
 
 21

2( )H p≡ Ω+Φ + v  
 
is constant everywhere. 
 Ideal gas.  For an ideal gas we have 
 
 ( )p vp c c Tρ= −  
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and if the heat capacities are assumed constant an isentropic change of state 
results in the following expression for H.  
 
 21

2ideal gas pH c T= Ω+ + v . 
 
The gas is hotter at places on a streamline where the speed is smaller or has a 
lower potential energy.  This may represent the heating of air at a stagnation 
point, cooling of ascending air, or heating of descending air. 
 The transformation from the function of pressure Φ(p) to heat capacity and 
temperature in the above equation for the isoentropic expansion of an ideal gas 
with constant heat capacity is proven as follows.  The total differential of entropy 
in terms of pressure and temperature is as follows. 
 

 
pT

S SdS dp dT
p T

⎛ ⎞∂ ∂⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 

 
In an isoentropic expansion, the change of entropy is zero and this give us a 
relation between the differential of pressure and differential of temperature. 
 

 , for 0
pT

S Sdp dT dS
p T

⎛ ⎞∂ ∂⎛ ⎞= − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 

 
The coefficient on the left-hand side can be determined from the Maxwell 
relations and the ideal gas EOS. 
 

 
, Maxwell relation

( ) 1 , ideal gas

pT

p v

S V
p T

c c
p Tρ
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−

= − = −

. 

 
The coefficient of the right hand side can be determined from the definition of the 
heat capacity at constant pressure. 
 

 

' , reversible process
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∂⎛ ⎞
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Substituting these relations into the equation gives us the following. 
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