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 The only material property of the fluid we have so far discussed is the 
density.  In the last chapter we introduced the rate of deformation or rate of strain 
tensor.  The distinguishing characteristic between fluids and solids is that fluids 
can undergo unlimited deformation and yet maintain its integrity.  The relation 
between the rate of deformation tensor and stress tensor is the mechanical 
constitutive equation of the material.  An ideal fluid has a stress tensor that is 
independent of the rate of deformation, i.e., it has an isotropic component, which 
is identified as the pressure and has zero viscosity. 
 
Cauchy’s stress principle and the conservation of momentum 
 The forces acting on an element of a continuous medium may be of two 
kinds.  External or body forces, such as gravitation or electromagnetic forces, 
can be regarded as reaching into the medium and acting throughout the volume.  
If the external force can be describes as the gradient of a scalar, the force is said 
to be conservative.  Internal or contact forces are to be regarded as acting on an 
element of volume through its bounding surfaces.  If an element of volume has 
an external-bounding surface, the forces there may be specified, e.g., when a 
constant pressure is applied over a free surface.  If the element is internal, the 
resultant force is that exerted by the material outside the surface upon that 
inside.  Let n be the unit outward normal at a point of the surface S and t(n) the 
force per unit area exerted there by the material outside S.  Then Cauchy’s 
principle asserts that t(n) is a function of the position x, the time t, and the 
orientation n of the surface element.  Thus the total internal force exerted on the 
volume V through the bounding surface S is 
 
 . (n)

S

dS∫∫ t
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If f is the external force per unit mass (e.g. if 03 is vertical, gravitation will exert a 
force –g e(3) per unit mass or -ρ g e(3) per unit volume, the total external force will 
be 
 
 . 

V

dVρ∫∫∫ f

 
The principle of the conservation of linear momentum asserts that the sum of 
these two forces equals the rate of change of linear momentum of the volume, 
i.e., 
 

 (n)
V V S

d dV dV dS
dt

ρ ρ= +∫∫∫ ∫∫∫ ∫∫v f t . 

 
This is just a generalization of Newton’s law of motion, which states that the rate 
of change of momentum of a particle is equal to the sum of forces acting on it.  It 
has been extended to a volume that contains a number of particles. 
 From the form of these integral relations we can deduce an important 
relation.  Suppose V is a volume of a given shape with characteristic dimension 
d.  Then the volume of V will be proportional to d3 and the area of S to d2, with 
the proportionality constants depending only on the shape.  Now let V shrink to a 
point but preserve its shape, then the volume integrals in the last equation will 
decrease as d3 but the surface integral will decrease as d2.  It follows that  
 

 20

1lim 0(n)d
S

dS
d→

=∫∫ t  

 
or, the stresses are locally in equilibrium. 
 
The stress tensor 
 To elucidate the nature of the stress system at a point P we consider a 
small tetrahedron with three of its faces parallel to the coordinate planes through 
P and the fourth with normal n (see Fig. 5.1 of Aris).  If dA is the area of the 
slanted face, the areas of the faces perpendicular to the coordinate axis Pi is  
 
 . i idA n dA=
 
The outward normals to these faces are –e(i) and we may denote the stress 
vector over these faces by –t(i).  (t(i) denotes the stress vector when +e(i) is the 
outward normal.)  Then applying the principle of local equilibrium to the stress 
forces when the tetrahedron is very small we have 
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Now let Tji denote the ith component of t(j) and t(n)i the ith component of t(n) so that 
this equation can be written 
 
 . ( )n i ji jt T= n

n

 
However, t(n) is a vector and n is a unit vector quite independent of the Tji so that 
by the quotient rule the Tji are components of a second order tensor T.  In dyadic 
notation we might write 
 
 . ( )n = •t T
 
This tells us that the system of stresses in a fluid is not so complicated as to 
demand a whole table of functions t(n)(x,n) at any given instant, but that it 
depends rather simply on n through the nine quantities Tji(x).  Moreover, because 
these are components of a tensor, any equation we derive with them will be true 
under any rotation of the coordinate axis. 
 Inserting the tensor expression for the stress into the momentum balance 
and using the equation of continuity and Green’s theorem we have 
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Since all the integrals are now volume integrals, they can be combined as a 
single integrand. 
 

 ( )
V

D dV
Dt

ρ ρ− −∇• =∫∫∫
v f T 0  

 
However, since V is an arbitrary volume this equation is satisfied only if the 
integrand vanishes identically. 
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This is Cauchy’s equation of motion and a is the acceleration.  It holds for any 
continuum no matter how the stress tensor T is connected with the rate of strain. 
 
The symmetry of the stress tensor 
 A polar fluid is one that is capable of transmitting stress couples and being 
subject to body torques, as in magnetic fluids.  In case of a polar fluid we must 
introduce a body torque per unit mass in addition to the body force and a couple 
stress in addition to the normal stress t(n).  The stress for polar fluids is discussed 
by Aris. 
 A fluid is nonpolar if the torques within it arise only as the moments of 
direct forces.  For the nonpolar fluid we can make the assumption either that 
angular momentum is conserved or that the stress tensor is symmetric.  We will 
make the first assumption and deduce the symmetry. 

 Return now to the integral linear momentum balance with the 
internal force expressed as a surface integral.  If we assume that all torques arise 
from macroscopic forces, then not only linear momentum but also the angular 
momentum x × (ρv) are expressible in terms of f and t(n).   
 
 

 ( )( ) ( ) ( )n
V V S

d dV dV dS
dt

ρ ρ× = × + ×∫∫∫ ∫∫∫ ∫∫x v x f x t  

 
The surface integral has as its ith component 
 
 ,( )ijk j kp p ijk j pk p

S V

x T n dS x T dVε ε=∫∫ ∫∫∫  

 
by Green’s theorem.  However, since xj,p = δjp, this last integrand is 
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where T× is the vector εijk Tjk. 
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Since v × v = 0, d(x × v)/dt = x × a, applying the transport theorem to the 
angular momentum we have 
 

 ( ) ( )
V V

d dV dV
dt

ρ ρ× = ×∫∫∫ ∫∫∫x v x a  

 
Substituting back into the equation for the angular momentum and rearranging 
gives 
 
  ( )

V V

dV dVρ ρ ×× − −∇• =∫∫∫ ∫∫∫x a f T T

 
However, the left-hand side vanishes for an arbitrary volume and so 
 
 . 0T× ≡
 
The components of T× are (T23-T32), (T31-T13), and (T12-T21) and the vanishing of 
these implies 
 
  ij jiT T=
 
so that T is symmetric for nonpolar fluids. 
 
Hydrostatic pressure 
 If the stress system is such that an element of area always experiences a 
stress normal to itself and this stress is independent of orientation, the stress is 
called hydrostatic.  All fluids at rest exhibit this stress behavior.  It implies that 
n•T is always proportional to n and that the constant of proportionality is 
independent of n.  Let us write this constant –p, then 
 

 . 
, hydrostatic stressi ij jn T p n

p

= −

• = −n T n
 
However, this equation means that any vector is a characteristic vector or 
eigenvector of T.  This implies that the hydrostatic stress tensor is spherical or 
isotropic.  Thus 
 

 
, hydrostatic stressij ijT p

p

δ= −

= −T I
 

 
for the state of hydrostatic stress. 
 For a compressible fluid at rest, p may be identified with the classical 
thermodynamic pressure.  On the assumption that there is local thermodynamic 
equilibrium even when the fluid is in motion this concept of stress may be 
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retained.  For an incompressible fluid the thermodynamic, or more correctly 
thermostatic, pressure cannot be defined except as the limit of pressure in a 
sequence of compressible fluids.  We shall see later that it has to be taken as an 
independent dynamical variable. 
 The stress tensor for a fluid may always be written  
 

 ij ij ijT p

p

Pδ= − +

= − +T I P
 

 
and Pij is called the viscous stress tensor.  The viscous stress tensor of a fluid 
vanishes under hydrostatic conditions. 
 If the external or body force is conservative (i.e., gradient of a scalar) the 
hydrostatic pressure is determined up to an arbitrary constant from the potential 
of the body force.   
  

 ( )

( )

, hydrostatic conditions
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ρ
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∇Ω =∇Φ
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∫

T f

 

 
Principal axes of stress and the notion of isotropy 
 The diagonal terms T11, T22, T33 of the stress tensor are sometimes called 
the direct stresses and the terms T12, T21, T31, T13, T23, T32 the shear stresses.  
When there are no external or stress couples, the stress tensor is symmetric and 
we can invoke the known properties of symmetric tensors.  In particular, there 
are three principal directions and referred to coordinates parallel to these, the 
shear stresses vanish.  The direct stresses with these coordinates are called the 
principal stresses and the axes the principal axes of stress.   
 An isotropic fluid is such that simple direct stress acting in it does not 
produce a shearing deformation.  This is an entirely reasonable view to take for 
isotropy means that there is no internal sense of direction within the fluid.  
Another way of expressing the absence of any internally preferred direction is to 
say that the functional relation between stress and rate of deformation must be 
independent of the orientation of the coordinate system.  We shall show in the 
next section that this implies that the principal axes of stress and rate of 
deformation coincide. 
 
The Stokesian fluid 
 The constitutive equation of a non-elastic fluid satisfying the hypothesis of 
Stokes is called a Stokesian fluid.  This fluid is based on the following 
assumptions. 
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I. The stress tensor Tij is a continuous function of the rate of deformation 
tensor eij and the local thermodynamic state, but independent of other 
kinematical quantities. 

II. The fluid is homogeneous, that is, Tij does not depend explicitly on x. 
III. The fluid is isotropic, that is, there is no preferred direction. 
IV. When there is no deformation (eij = 0) the stress is hydrostatic, (Tij = -p δij). 
The first assumption implies that the relation between the stress and rate of 
strain is independent of the rigid body rotation of an element given by the 
antisymmetric kinematical tensor Ωij.  The thermodynamic variables, for example, 
pressure and temperature, will be carried along this discussion without specific 
mention except where it is necessary for emphasis.  We are concerned with a 
homogeneous portion of fluid so the second assumption is that the stress tensor 
depends only on position through the variation of eij and thermodynamic 
variables with position.  The third assumption is that of isotropy and this implies 
that the principal directions of the two tensors coincide.  To express this as an 
equation we write Tij = fij(epq), then if there is no preferred direction Tij is the same 
function fij of epq as Tij is of epq.  Thus 
 
 ( )ij ij pqT f e= . 
 
The fourth assumption is that the tensor 
 

 Pij = Tij + p δij  
 
vanishes when there is no motion.  Pij is called the viscous stress tensor. 
 
Constitutive equations of the Stokesian fluid 
 The arguments for the form of the constitutive equation for the Stokesian 
fluid is given by Aris and is not repeated here.  The equation takes the form 
 

 ij ij ij ik kjT p e e e

p

δ β γ

β γ

= − + +

= − + +T I e e ei
, 

 
which insures that Tij reduces to the hydrostatic form when the rate of 
deformation vanishes. 
 
The Newtonian fluid 
 The Newtonian fluid is a linear Stokesian fluid, that is, the stress 
components depend linearly on the rates of deformation.  Aris gives two 
arguments that deduce the form of the constitutive equation for a Newtonian 
fluid. 
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Interpretation of the constants λ and µ 
 Consider the shear flow given by 
 
 . 1 2 2 3( ), 0v f x v v= = =
 
For this we have all the eij zero except 
 

 1
12 21 2

2

1 1( )
2 2

ve e f x
x
∂′= = =
∂

. 

 
Thus 
 

 1
12 21 2

2

2 ( ) vP P f x
x

µ µ ∂′= = =
∂

 

 
and all other viscous stresses are zero.  It is evident that µ is the proportionality 
constant relating the shear stress to the velocity gradient.  This is the common 
definition of the viscosity, or more precisely the coefficient of shear viscosity of a 
fluid. 
 For an incompressible, Newtonian fluid the pressure is the mean of the 
principal stresses since this is 
 

 
1 2
3 3iiT p

p

λ µ= − + Θ+ Θ

= −
. 

 
 For a compressible fluid we should take the pressure p as the 
thermodynamic pressure to be consistent with our ideas of equilibrium.  Thus if 
we call p−  the mean of the principal stresses, 
 

 

2( )
3
2( )
3
2 1( )
3

p p

D
Dt

λ µ

λ µ

ρλ µ
ρ

− = − + Θ

= − + ∇•

= − +

v . 
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Since p, the thermodynamic pressure, is in principle known from the equation of 
state p p−  is a measurable quantity.  The coefficient in the equation is known as 
the coefficient of bulk viscosity.  It is difficult to measure, however, since relatively 
large rates of change of density must be used and the assumption of linearity is 
then dubious.  Stokes assumed that p = p and on this ground claimed that  
 

 2 0
3

λ µ+ =  

supporting this from an argument from the kinetic theory of gases. 
 
Assignment 5.1  Assume a Newtonian fluid and calculate the stress tensor for 
the flow fields of assignment 4.2.  Evaluate the force due to the stress on the 
surface y=0. 
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