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Reading assignment: Chapter 4 of Aris 
 
 Kinematics is the study of motion without regard to the forces that bring 
about the motion.  Already, we have described how rigid body motion is 
described by its translation and rotation.  Also, the divergence and curl of the 
field and values on boundaries can describe a vector field.  Here we will consider 
the motion of a fluid as microscopic or macroscopic bodies that translate, rotate, 
and deform with time.  We treat fluids as a continuum such that the fluid identified 
to be at a specific point in space at one time with neighboring fluid will be at 
another specific point in space at a later time with the same neighbors, with the 
exception of certain bifurcations.  This identification of the fluid occupying a point 
in space requires that the motion is deterministic rather than stochastic, i.e., 
random motions such as diffusion and turbulence are not described.  Central to 
the kinematics of fluid motion is the concept of convection or following the motion 
of a “particle” of fluid. 
 
Particle paths and material derivatives 
 Fluid motion will be described as the motion of a “particle” that occupies a 
point in space.  At some time, say t=0, a fluid particle is at a position ξ = (ξ1, ξ2, 
ξ3) and at a later time the same particle is at a position x.  The motion of the 
particle that occupied this original position is described as follows. 
 
 1, 2, 3( , ) or ( , )i it x x tξ ξ ξ ξ= =x x  
 
 The initial coordinates ξ of a particle will be referred to as the material 
coordinates of the particles and, when convenient, the particle itself may be 
called the particle ξ.  The terms convected and Lagrangian coordinates are also 
used.  The spatial coordinates x of the particle may be referred to as its position 
or place.  It will be assumed that the motion is continuous, single valued and the 
previous equation can be inverted to give the initial position or material 
coordinates of the particle which is at any position x at time t; i.e., 
 
 1 2 3( , ) ( , , , )i it or x x x tξ ξ ξ ξ= =x  
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are also continuous and single valued.  Physically this means that a continuous 
arc of particles does not break up during the motion or that the particles in the 
neighborhood of a given particle continue in its neighborhood during the motion.  
The single valuedness of the equations mean that a particle cannot split up and 
occupy two places nor can two distinct particles occupy the same place.  
Exceptions to these requirements may be allowed on a finite number of singular 
surfaces, lines or points, as for example a fluid divides around an obstacle.  It is 
shown in Appendix B that a necessary and sufficient condition for the inverse 
functions to exist is that the Jacobian 
 

 1 2 3

1 2 3

( , , )
( , , )
x x xJ
ξ ξ ξ

∂
=
∂

 

 
should not vanish. 
 The transformation x=x(ξ,t) may be looked at as the parametric equation 
of a curve in space with t as the parameter.  The curve goes through the point ξ, 
corresponding to the parameter t=0, and these curves are the particle paths.  Any 
property of the fluid may be followed along the particle path.  For example, we 
may be given the density in the neighborhood of a particle as a function ρ(ξ,t), 
meaning that for any prescribed particle ξ we have the density as a function of 
time, that is, the density that an observer riding on the particle would see.  
(Position itself is a “property” in this general sense so that the equations of the 
particle path are of this form.)  This material description of the change of some 
property, say ℑ(ξ,t), can be changed to a spatial description ℑ(x,t). 
 
 [ ]( , ) ( , ),t tξℑ = ℑx x t  
 
Physically this says that the value of the property at position x at time t is the 
value appropriate to the particle that is at x at time t.  Conversely, the material 
description can be derived from the spatial one. 
 
 [ ]( , ) ( , ),t tξ ξℑ = ℑ x t  
 
meaning that the value as seen by the particle at time t is the value at the 
position it occupies at that time. 
 Associated with these two descriptions are two derivatives with respect to 
time.  We shall denote them by 
 

 

derivative with respect to time keeping constant.

and

derivative with respect to time keeping constant

xt t

D
Dt t ξ

ξ

∂ ∂⎛ ⎞≡ =⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞≡ =⎜ ⎟∂⎝ ⎠

x
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Thus ∂ℑ/∂t is the rate of change of ℑ as observed at a fixed point x, whereas 
Dℑ/Dt is the rate of changed as observed when moving with the particle, i.e., for 
a fixed value of ξ.  The latter we call the material derivative.  It is also called the 
convected, convective, or substantial derivative and often denoted by D/Dt.  In 
particular the material derivative of the position of a particle is it velocity.  Thus 
putting ℑ = xi, we have 
 

 

1 2 3( , , , )

or

i
i i

Dxv x
Dt t

D
Dt

ξ ξ ξ∂
= =

∂

=
xv

t

. 

 
This allows us to establish a connection between the two derivatives, for 
 

 

[ ]( , ) ( , ),

( )

i

x i

i
i

D t x t
Dt t t

x
t x t

v
t x

t

ξ

ξ ξℑ ∂ ∂
= ℑ = ℑ
∂ ∂

∂∂ℑ ∂ℑ ⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ℑ ∂ℑ

= +
∂ ∂
∂ℑ

= + •∇ ℑ
∂

v

t

 

 
Streamlines 
 We now have a formal definition of the velocity field as a material 
derivative of the position of a particle.   
 

 ( , ) ( , )( ) D t tt
Dt t
ξ ξ∂

= =
∂

x xv x,  

 
The field lines of the velocity field are called streamlines; they are the solutions of 
the three simultaneous equations 
 

 ( , )d t
ds

=
x v x  

 
where s is a parameter along the streamline.  This parameter s is not to be 
confused with the time, for in the above equation t is held fixed while the 
equations are integrated, and the resulting curves are the streamlines at the 
instant t.  These may vary from instant to instant and in general will not coincide 
with the particle paths. 
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 To obtain the particle paths from the velocity field we have to follow the 
motion of each particle.  This means that we have to solve the differential 
equations 
 

 ( , )D t
Dt

=
x v x  

 
subject to x=ξ at t=0.  Time is the parameter along the particle path.  Thus the 
particle path is the trajectory taken by a particle.   

The flow is called steady if the velocity components are independent of 
time.  For steady flows, the parameter s along the streamlines may be taken to 
be t and the streamlines and particle paths will coincide.  The converse does not 
follow as there are unsteady flows for which the streamlines and particle paths 
coincide. 

If C is a closed curve in the region of flow, the streamlines through every 
point of C generate a surface known as a stream tube.  Let S be a surface with C 
as the bounding curve, then 

 

S

dS•∫∫ v n  

 
is known as the strength of the stream tube at its cross-section S. 
 The acceleration or the rate of change of velocity is defined as 
 

 
( )

i i
i j

j

D
Dt t

v va v
t x

∂
= = + •∇

∂
∂ ∂

= +
∂ ∂

v va v v

w

 

 
Notice that in steady flow this does not vanish but reduces to 
 
 . ( ) for steady flo= •∇a v v
 
Even in steady flow other than a constant translation, a fluid particle will 
accelerate if it changes direction to go around an obstacle or if it increases its 
speed to pass through a constriction. 
 
Streaklines 
 The name streakline is applied to the curve traced out by a plume of 
smoke or dye, which is continuously injected at a fixed point but does not diffuse.  
Thus at time t the streakline through a fixed-point y is a curve going from y to 
x(y, t), the position reached by the particle which was at y at time t=0.  A particle 
is on the streakline if it passed the fixed-point y at some time between 0 and t.  If 
this time was t’, then the material coordinates of the particle would be given by ξ 
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= ξ(y, t’).  However, at time t this particle is at x = x(ξ, t) so that the equation of 
the streakline at time t is given by  
 
 [ ]( , '),t tξ=x x y , 
 
where the parameter t’ along it lies in the interval 0 ≤ t’ ≤ t.  If we regard the 
motion as having been proceeding for all time, then the origin of time is arbitrary 
and t’ can take negative values -∞ ≤ t’ ≤ t. 
 The flow field illustrated in 4.13 by Aris is assigned as an exercise. 
 
Dilatation 
 We noticed earlier that if the coordinate system is changed from 
coordinates ξ to coordinates x, then the element of volume changes by the 
formula 
 

 1 2 3
1 2 3

1 2 3

( , , )
( , , )
x x xdV d d d J dVξ ξ ξ
ξ ξ ξ

∂
= =
∂ 0  

 
If we think of ξ as the material coordinates, they are the Cartesian coordinates at 
t = 0, so that dξ1 dξ2 dξ3 is the volume dVo of an elementary rectangular 
parallelepiped.  Consider this elementary parallelepiped about a given point ξ at 
the initial instant.  By the motion this parallelepiped is moved and distorted but 
because the motion is continuous it cannot break up and so at some time t is 
some neighborhood of the point x = x(ξ, t).  By the above equation, its volume is 
dV = J dVo and hence  
 

 ratio of an elementary material volume to its initial volume
o

dVJ
dV

= = . 

 
It is called the dilation or expansion.  The assumption that x = x(ξ, t) can be 
inverted to give ξ = ξ(x, t), and vice versa, is equivalent to requiring that neither J 
nor J -1 vanish. Thus,  
 
  0 J< < ∞
 
 We can now ask how the dilation changes as we follow the motion.  To 
answer this we calculate the material derivative DJ/Dt.  However, 
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1 1

1 2

2 2

1 2 3 1 2 3

3 3

1 2

ji k
ijk

1

3

2

3

3

x x x

xx x x x xJ

x x x

ξ ξ ξ

ε
ξ ξ ξ ξ ξ ξ

ξ ξ ξ

∂ ∂ ∂
∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 

 
Now 
 

 i i

j j

i

j

x Dx vD
Dt Dtξ ξ ξ

⎛ ⎞∂ ∂∂
= =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 

 
for D/Dt is differentiation with ξ constant so that the order can be interchanged.  
Now if we regard vi as a function of x1, x2, x3, 
 

 i i m

j m j

v v x
xξ ξ

∂ ∂ ∂
=

∂ ∂ ∂
 

 
The above relation can now be applied to differentiation of the Jacobian.   
  

 

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1

1

j j ji k i k i
ijk ijk ijk

j j ji m k i m k i k m
ijk ijk ijk

m m

ijk

x x xx x x x xDJ D D D
Dt Dt Dt Dt

x v xv x x x x x x v x
x x

xv
x

ε ε ε
ξ ξ ξ ξ ξ ξ ξ ξ ξ

ε ε ε
ξ ξ ξ ξ ξ ξ ξ ξ ξ

ε

∂ ∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂
=

∂

k

m

x

x

( )

32

1 2 3 1 2 2 3 1 2 3 3

31 2

1 2 3

j j ji k i k i k
ijk ijk

x x xx x x x v xv
x x

vv vJ J J
x x x

Jv

ε ε
ξ ξ ξ ξ ξ ξ ξ ξ ξ

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂∂
+ +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂∂ ∂

= + +
∂ ∂ ∂

= ∇•

 

 
where we made use of the property of the determinant that the determinant of a 
matrix with repeated rows is zero. Thus, 
 

 (ln )D J
Dt

v= ∇•  

 
We thus have an important physical meaning for the divergence of the velocity 
field.  It is the relative rate of dilation following a particle path.  It is evident that for 
an incompressible fluid motion, 
 . 0 for incompressible fluid motion∇• =v
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Reynolds’ transport theorem 
 An important kinematical theorem can be derived from the expression for 
the material derivative of the Jacobian.  It is due to Reynolds and concerns the 
rate of change not of an infinitesimal element of volume but any volume integral.  
Let ℑ(x, t) be any function and V(t) be a closed volume moving with the fluid, that 
is consisting of the same fluid particles.  Then 
 
 

( )

( ) ( , )
V t

F t t= ℑ∫∫∫ x dV  

 
is a function of t that can be calculated.  We are interested in its material 
derivative DF/Dt.  Now the integral is over the varying volume V(t) so we cannot 
take the differentiation through the integral sign.  If, however, the integration were 
with respect to a volume in ξ -space it would be possible to interchange 
differentiation and integration since D/Dt is differentiation with respect to t 
keeping ξ constant.  The transformation x = x(ξ, t) , dV = J dVo allows us to do 
just this, for V(t) has been defined as a moving material volume and so come 
from some fixed volume Vo at t = 0.  Thus 
 

 

[ ]
( )

( )

( , ) ( , ),

( )

( )

o

o

o

o
V t V

o
V

o
V

V t

d dt dV t t J dV
dt dt

D DJJ dV
Dt Dt

D J dV
Dt

D dV
Dt

ξℑ = ℑ

ℑ⎛ ⎞= + ℑ⎜ ⎟
⎝ ⎠

ℑ⎛ ⎞= +ℑ ∇•⎜ ⎟
⎝ ⎠

ℑ⎛ ⎞= +ℑ ∇•⎜ ⎟
⎝ ⎠

∫∫∫ ∫∫∫

∫∫∫

∫∫∫

∫∫∫

x x

v

v

 

 
Since D/Dt = (∂ /∂ t) + v•∇ we can express this formula into a number of different 
forms.  Substituting for the material derivative and collecting the gradient terms 
gives 
 

 ( ) ( )

( )

( , ) ( )

( )

V t V t

V t

d t dV dV
dt t

dV
t

∂ℑ⎛ ⎞ℑ = + •∇ℑ+ℑ ∇•⎜ ⎟∂⎝ ⎠

∂ℑ⎛ ⎞= +∇• ℑ⎜ ⎟∂⎝ ⎠

∫∫∫ ∫∫∫

∫∫∫

x v

v

v

 

 
Now applying Green’s theorem to the second integral we have 
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( ) ( ) ( )

( , ) ( )
V t V t S t

d t dV dV dS
dt t

∂ℑ
ℑ = + ℑ •

∂∫∫∫ ∫∫∫ ∫∫x v n

dV

 

 
where S(t) is the bounding surface of V(t).  This admits of an immediate physical 
picture for it says that the rate of change of the integral of ℑ within the moving 
volume is the integral of the rate of change of ℑ at a point plus the net flow of ℑ 
over the bounding surface.  ℑ can be any scalar or tensor component, so that 
this is a kinematical result of wide application.  It is going to be the basis for the 
conservation of mass, momentum, energy, and species.  This approach to the 
conservation equations differs from the approach taken by Bird, Stewart, and 
Lightfoot.  They perform a balance on a fixed volume of space and explicitly 
account for the convective flux across the boundaries. 
 
Conservation of mass and the equation of continuity 
 Although the idea of mass is not a kinematical one, it is convenient to 
introduce it here and to obtain the continuity equation.  Let ρ(x, t) be the mass 
per unit volume of a homogeneous fluid at position x and time t.  Then the mass 
of any finite material volume V(t) is 
 
 . 

( )

( , )
V t

m tρ= ∫∫∫ x

 
If V is a material volume, that is, if it is composed of the same particles, and there 
are no sources or sinks in the medium we take it as a principle that the mass 
does not change.  By inserting ℑ = ρ in Reynolds’ transport theorem we have 
 

 

( )

( )

( )

( )

0

V t

V t

dm D dV
dt Dt

dV
t

ρ ρ

ρ ρ

⎧ ⎫= + ∇•⎨ ⎬
⎩ ⎭

∂⎧ ⎫= +∇•⎨ ⎬∂⎩ ⎭

=

∫∫∫

∫∫∫

v

v  

 
This is true for an arbitrary material volume and hence the integrand itself must 
vanish everywhere.  It follows that 
 

 ( ) ( )D
Dt t

0ρ ρρ ρ∂
+ ∇• = +∇• =

∂
v v  

 
which is the equation of continuity. 
 A fluid for which the density ρ is constant is called incompressible.  In this 
case the equation of continuity becomes 
 
  0 incompressible flow∇• =v
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and the motion is isochoric or the velocity field solenoidal. 
 Combining the equation of continuity with Reynolds’ transport theorem for 
a function ℑ = ρ F we have 
 

 ( )

( )

( )

( ) ( )

( )

( )

( )

( )

( ) ( )

( )

sources

Thus

sources 0, for any ( )

thus, sources 0

V t V t

V t

V t

V t

V t

d DF dV F F dV
dt Dt

DF DF d
Dt Dt

DF dV
Dt

dV

DF dV V t
Dt

DF
Dt

v

v

ρ ρ ρ

ρρ ρ

ρ

ρ

ρ

⎧ ⎫= + ∇•⎨ ⎬
⎩ ⎭

⎧ ⎫= + + ∇•⎨ ⎬
⎩ ⎭

=

=

⎡ ⎤− =⎢ ⎥⎣ ⎦

− =

∫∫∫ ∫∫∫

∫∫∫

∫∫∫

∫∫∫

∫∫∫

V

 

 
This equation is useful for deriving the conservation equation of a quantity that is 
expressed as specific to a unit of mass, e.g., specific internal energy and species 
mass fraction. 
 
Deformation and rate of strain 
 The motion of fluids differs from that of rigid bodies in the deformation or 
strain that occurs with motion.  Material coordinates give a reference frame for 
this deformation or strain. 
 Consider two nearby points P and Q with material coordinates ξ and ξ + 
dξ.  At time t they are to be found at x(ξ, t) and x(ξ+dξ, t). Now 
 

 2( , ) ( , ) (i
i i j

j

x )x d t x t d O dξ ξ ξ ξ
ξ
∂

+ = + +
∂

 

 
where O(d2) represents terms of order dξ2 and higher which will be neglected 
from this point onward.  Thus the small displacement vector dξ has now become 
 
 ( , ) ( ,d d t )tξ ξ ξ= + −x x x  
 
where 
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 i
i j

j

xdx dξ
ξ
∂

=
∂

 . 

 
It is clear from the quotient rule (since dξ is arbitrary) that the nine quantities 
∂xi/∂ξj  are the components of a tensor.  It may be called the displacement 
gradient tensor and is basic to the theories of elasticity and rheology.  For fluid 
motion, its material derivative is of more direct application and we will 
concentrate on this. 
 If v = Dx/Dt is the velocity, the relative velocity of two particles ξ and ξ + 
dξ has components 
 

 i i
i k

k k

v xDdv d d
Dt kξ ξ

ξ ξ
⎛ ⎞∂ ∂

= = ⎜ ⎟∂ ∂⎝ ⎠
 

 
However, by inverting the above relation, we have 
 

 i k i
i j

k j j

v vdv dx dx
x x j
ξ

ξ
∂ ∂ ∂

= =
∂ ∂ ∂

 

 
expressing the relative velocity in terms of current position.  Again it is evident 
that the (∂vi/∂xj) are components of a tensor, the velocity gradient tensor, for 
which we need to obtain a sound physical feeling. 
 We first observe that if the motion is a rigid body translation with a 
constant velocity u,  
 
 tξ= +x u  
 
and the velocity gradient tensor vanishes identically.  Secondly, the velocity 
gradient tensor can be written as the sum of symmetric and antisymmetric parts, 
 

 

1 1
2 2

or

j ji i i

j j i j

ij ij

v vv v v

ix x x x x

e

⎛ ⎞ ⎛∂ ∂∂ ∂ ∂
≡ + + −⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝
= +Ω

∇ = +Ωv e

⎞
⎟⎟
⎠

 

 
We have seen that a relative velocity dvi related to the relative position dxj by an 
antisymmetric tensor Ωij, i.e., dvi = Ωij dxj, represents a rigid body rotation with 
angular velocity ω = -vec Ω.  In this case 
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1 1
2 2

or
1
2

k
i ijk jk ijk

j

v
x

ω ε ε

ω

∂
= − Ω =

∂

= ∇× v

 

 
Thus the antisymmetric part of the velocity gradient tensor corresponds to rigid 
body rotation, and, if the motion is a rigid one (composed of a translation plus a 
rotation), the symmetric part of the velocity gradient tensor will vanish.  For this 
reason the tensor eij is called the deformation or rate of strain tensor and its 
vanishing is necessary and sufficient for the motion to be without deformation, 
that is, rigid.  
 
Physical interpretation of the (rate of) deformation tensor 
 The (rate of) deformation tensor is what distinguishes fluid motion from 
rigid body motion.  Recall that a rigid body is one in which the relative distance 
between two points in the body does not change.  We show here that the (rate 
of) deformation tensor describes the rate of change of the relative distance 
between two particles in a fluid.  Also, it describes the rate of change of the angle 
between three particles in the fluid. 
 First we will see how the distance between two material points change 
during the motion.  The length of an infinitesimal line segment from P to Q is ds, 
where 
 

 2 i i
i i j

j k

x xds dx dx d d kξ ξ
ξ ξ
∂ ∂

= =
∂ ∂

 . 

 
now P and Q are the material particles ξ and ξ + dξ so that dξj and dξk do not 
change during the motion.  Also, recall that Dxi/Dt = vi.  Thus 
 

 2( ) 2i i i i i i
j k j

j k j k j k

v x x v v xD ds d d d d
Dt kξ ξ ξ

ξ ξ ξ ξ ξ ξ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
ξ  

 
by symmetry.  However, 
 

 
[ ]

and

sin ce ( ) and ( )

i i i
j i j k

j j k

v v xd dv dx d d
x

ξ ξ
ξ ξ

ξ ξ

∂ ∂ ∂
= = =

∂ ∂ ∂

= =v v x x x

ix
 

 
Thus 
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 21 ( ) ( ) ( ) ( )
2

i
j i ij ij j i ij j

j

vD Dds ds ds dx dx e dx dx e dx dx
Dt Dt x i

∂
= = = +Ω =

∂
 

 
by symmetry, or 
 

 1 ( )
( )

ji
ij

dxdxD ds e
ds Dt ds ds

=  . 

 
Now dxi/ds is the ith component of a unit vector in the direction of the segment 
PQ, so that this equation says that the rate of change of the length of the 
segment as a fraction of its length is related to its direction through the 
deformation tensor. 
 In particular, if PQ is parallel to the coordinate axis 01 we have dx/ds = e(1) 
and 
 

 1 11
1

1 ( ) in direction ofD dx e 01
dx Dt

=  

 
Thus e11 is the rate of longitudinal strain of an element parallel to the 01 axis.  
Similar interpretations apply to e22 and e33. 
 Now lets examine the angle between two line segments during the motion.  
Consider the segment, PQ and PR where PQ is the segment ξ + dξ as before 
and PR is the segment ξ + dξ’.  If θ is the angle between them and ds’ is the 
length of PR, we have from the scalar product, 
 
 'cos 'i ids ds dx dxθ =  
 
Differentiating with respect to time we have 
 

 
[ ]'cos ' '

' '

i i i i

i i
j i i

j j

D ds ds dv dx dx dv
Dt

v vdx dx dx dx
x x

θ = +

∂ ∂
= +
∂ ∂ j

j

 

 
since  . The i and j are dummy suffixes so we may interchange 
them in the first term on the right, then performing differentiation we have after 
dividing by ds ds’ 

' ( / ) 'i i jdv v x dx= ∂ ∂
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1 1cos ' sin
'

'
'

'2
'

j ji i

i j

ji
ij

D Dds ds
ds Dt ds Dt Dt

v dxv dx
x x ds ds

dxdxe
ds ds

Dθθ θ⎧ ⎫+ −⎨ ⎬
⎩ ⎭

⎛ ⎞∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

=

 

 
Now suppose that dx’ is parallel to the axis 01 and dx to the axis 02, so that 

1 2( ' / ') and ( / ) and / 2i i j jdx ds dx ds 12δ δ θ π= = = .  Then 
 

 12
122d e

dt
θ

− = . 

 
Thus e12 is to be interpreted as one-half the rate of decrease of the angle 
between two segments originally parallel to the 01 and 02 axes respectively.  
Similar interpretations are appropriate to e23 and e31. 
 The fact that the rate of deformation tensor is linear in the velocity field 
has an important consequence.  Since we may superimpose two velocity fields to 
form a third, it follows that the deformation tensor of this is the sum, of the 
deformation tensors of the fields from which it was superimposed.  If vi= λ(i) xi (no 
summation on i) , we have a deformation which is the superposition of three 
stretching parallel to the three axis.  However, if v1=f(x2), v2 = 0, v3 = 0 so that 
only nonzero component of the deformation tensor is e12 = ½ f’(x2), the motion is 
one of pure shear in which elements parallel to the coordinate axis is not 
stretched at all.  Note however that in pure stretching an element not parallel or 
perpendicular to the direction of stretching will suffer rotation.  Likewise in pure 
shear an element not normal to or in the plane of shear will suffer stretching. 
 
Principal axis of deformation 
 The rate of deformation tensor is a symmetric tensor and the principal axis 
of deformation can be found.  They correspond to the eigenvalues of the matrix 
and the eigenvalues are the principal rates of strain.  A set of particles that is 
originally on the surface of a sphere will be deformed to an ellipsoid whose axes 
are coincident with the principal axis. 
 
Vorticity, vortex lines, and tubes 
 We have frequently reminders of rotating bodies of fluid such as tropical 
storms, hurricanes, tornadoes, dust devils, whirlpools, eddies in the flow behind 
objects, turbulence, and the vortex in draining bathtubs.  The kinematics of these 
fluid motions is described by the vorticity. 

The antisymmetric part of the rate of strain tensor Ωij represents the local 
rotation, ωk.  Recall 
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The curl of velocity is known as the vorticity, 
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Thus the vorticity and the antisymmetric part of the rate of strain tensor is a 
measure of the rotation of the velocity field.  An irrotational flow field is one in 
which the vorticity vanishes everywhere.  The field lines of the vorticity field are 
called vortex lines and the surface generated by the vortex lines through a closed 
curve C is a vortex tube.  The strength of a vortex tube is defined as the surface 
integral of the normal component.  It is equal to the circulation around the closed 
curve C that bounds the cross-section S by Stokes’ theorem. 
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 We observe that the strength of a vortex tube at any cross-section is the 
same, as w is a solenoidal vector.  The surface integral of the normal component 
of a solenoidal vector vanishes over any closed surface.  The surface integral on 
the surface of a vortex tube is zero because the sides are tangent to the vorticity 
vector field.  Thus the surface integral across any cross-section must be equal in 
magnitude.  The magnitude of the vorticity field can be visualized from the 
relative width of the vortex tubes in the same manner that the magnitude of the 
velocity field can be visualized by the width of the stream tubes.  
 Because the strength of the tube does not vary with position along the 
tube, it follows that the vortex tubes are either closed, go to infinity or end on 
solid boundaries of rotating objects.  In a real fluid satisfying the no-slip boundary 
condition, vortex lines must be tangential to the surface of a body at rest, except 
at isolated points of attachment and separation, because the normal component 
of vorticity vanishes on the stationary solid. 
 When the vortex tube is immediately surrounded by irrotational fluid, it will 
be referred to as a vortex filament.  A vortex filament is often just called a vortex, 
but we shell use this term to denote any finite volume of vorticity immersed in 
irrotational fluid.  Of course, the vortex filament and the vortex require the fluid to 
be ideal (zero viscosity) to make strict sense, because viscosity diffuses vorticity, 
but they are useful approximations for real fluids of small viscosity. 
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 Helmholtz gave three laws of vortex motion in 1858.  For the motion of an 
ideal (zero viscosity) barotropic (density is a single valued function of pressure) 
fluid under the action of conservative external body forces (gradient of a scalar), 
they can be expressed as follows: 
I. Fluid particles originally free of vorticity remain free of vorticity. 
II. Fluid particles on a vortex line at any instant will be on a vortex line at 

subsequent times.  Alternatively, it can be said that vortex lines and tubes 
move with the fluid. 

III. The strength of a vortex tube does not vary with time during the motion of 
the fluid. 

The equations for the dynamics of vorticity will be developed later. 
 
P. G. Saffman, Vortex Dynamics, Cambridge University Press, 1992. 
C. Truesdell, The Kinematics of Vorticity, Indiana University Press, 1954. 
 
Assignment 4.1  Plot the streamlines, particle paths, and streaklines of the flow 
field described in Sec. 4.13.  Find the CHBE 501 web page.  Download the files 
in CENG501/Problems/lines.  Execute lines with MATLAB. 
 
Assignment 4.2  Execute the program deform in CHBE 501/Problems/deform 
and print the figures.  It computes the particle paths for a patch of particles 
deforming in Couette flow, stagnation flow, and that of Sec 4.13.  Look at the 
respective subroutine to determine the equations of the flow field.  For each of 
these flow fields calculate: 
a) divergence 
b) curl 
c) rate of deformation tensor 
d) antisymmetric tensor 
e) Which fields are solenoidal or irrotational? 
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