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Reading assignment: Chapter 3 of Aris 
 
Tensor functions of time-like variable 
 In the last chapter, vectors and tensors were defined as quantities with 
components that transform in a certain way with rotation of coordinates.  
Suppose now that these quantities are a function of time.  The derivatives of 
these quantities with time will transform in the same way and thus are tensors of 
the same order.  The most important derivatives are the velocity and 
acceleration. 
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 The differentiation of products of tensors proceeds according to the usual 
rules of differentiation of products.  In particular, 
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Curves in space 
 The trajectory of a particle moving is space defines a curve that can be 
defined with time as parameter along the curve.  A curve in space is also defined 
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by the intersection of two surfaces, but points along the curve are not associated 
with time.  We will show that a natural parameter for both curves is the distance 
along the curve. 
 The variable position vector x(t) describes the motion of a particle.  For a 
finite interval of t, say a ≤ t ≤ b, we ca plot the position as a curve in space.  If the 
curve does not cross itself (i.e., if x(t) ≠ x(t’), a ≤ t < t’ ≤ b) it is called simple;  if 
x(a) = x(b) the curve is closed.  The variable t is now just a parameter along the 
curve that may be thought of as the time in motion of the particle.  If t and t’ are 
the parameters of two points, the cord joining them is the vector x(t’) – x(t).  As 
t→ t’ this vector approaches ( )  and so in the limit is proportional to .  
However the limit of the cord is the tangent so that  is in the direction of the 
tangent.  If  we can construct a unit tangent vector τ. 
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 Now we will parameterize a curve with distance along the curve rather 
than time.  If x(t) and x(t+dt) are two very close points, 
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The arc length from any given point t=a is therefore 
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s is the natural parameter to use on the curve, and we observe that 
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A curve for which a length can be so calculated is called rectifiable.  From this 
point on we will regard s as the parameter, identifying t with s and letting the dot 
denote differentiation with respect to s.  Thus 
 

( ) )s s=τ x(�  
 
is the unit tangent vector. 
 Let x(s), x(s+ds), and x(s-ds) be three nearby points on the curve.  A 
plane that passes through these three points is defined by the linear 
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combinations of the cord vectors joining the points.  This plane containing the 
points must also contain the vectors  
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Thus, in the limit when the points are coincident, the plane reaches a limiting 
position defined by the first two derivatives and .  This limiting plane is 
called the osculating plane and the curve appears to lie in this plane in the 
intermediate neighborhood of the point.  To prove this statement: (1) A plane is 
defined by the two vectors, and , if they are not co-linear. (2) The 
coordinates of the three points on the curve in the previous two equations are a 
linear combination of x and , thus they line in the plane. 

( )sx�

)

( )sx��

( )sx�

)s

(sx��

( ), (s x� ( )sx��
Now τ so  and since τ•τ = 1, =x� =x τ�� �

 

 
( )

0 2

0

d
ds
•

= = • + • = •

• =

τ τ
τ τ τ τ τ τ

τ τ

� �

�

�  

 
so that the vector  is at right angles to the tangent.  Let 1/τ� ρ  denote the 
magnitude of . τ�
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Then ν is a unit normal and defines the direction of the so-called principle normal 
to the curve. 
 To interpret ρ, we observe that the small angle dθ between the tangents at 
s and s+ds is given by 
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since  and so .  Thus, 0• =τ τ� 0• + • =τ τ τ τ�� � �
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is the reciprocal of the rate of change of the angle of the tangent with arc length, 
i.e., ρ is the radius of curvature.  Its reciprocal 1/ρ is the curvature, 
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 A second normal to the curve may be taken to form a right-hand system 
with τ and ν.  This is called the unit binormal, 
 
  = ×β τ ν
 
Line integrals 
 If F(x) is a function of position and C is a curve composed of connected 
arcs of simple curves, x = x(t), a ≤ t ≤ b or x = x(s), a ≤ s ≤ b, we can define the 
integral of F along C as 
 

  

[ ]

[ ]{ }1/ 2

( ) ( )

or

( ) ( ) ( ) ( )

b

C a

b

C a

F dt F t dt

F ds F t t t d

=

= •

∫ ∫

∫ ∫

x x

x x x x� �

 
Henceforth, we will assume that the curve has been parameterized with respect 
to distance along the curve, s. 

The integral is from a to b.  If the integral is in the opposite direction with 
opposite limits, then the integral will have the same magnitude but opposite sign.  
If x(a) = x(b), the curve C is closed and the integral is sometimes written 
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If the integral around any simple closed curve vanishes, then the value of the 
integral from any pair of points a and b is independent of path.  To see this we 
take any two paths between a and b, say C1 and C2, and denote by C the closed 
path formed by following C1 from a to b and C2 back from b to a. 
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 If a(x) is any vector  function of position, a•τ is the projection of a tangent 
to the curve.  The integral of a•τ around a simple closed curve C is called the 
circulation of a around C.  
 
 [ ]1 2 3( ), ( ), ( )i iC C
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We will show later that a vector whose circulation around any simple closed 
curve vanishes is the gradient of a scalar. 
Surface integrals 
 Many types of surfaces and considered in transport phenomena.  Most 
often the surfaces are the boundaries of volumetric region of space where 
boundary conditions are specified.  The surfaces could also be internal 
boundaries where the material properties change between two media.  Finally 
the surface itself may the subject of interest, e.g. the statics and dynamics of 
soap films.   

A proper mathematical treatment of surfaces requires some definitions.  A 
closed surface is one which lies within a bounded region of space and has an 
inside and outside.  If the normal to the surface varies continuously over a part of 
the surface, that part is called smooth.  The surface may be made up of a 
number of subregions, which are smooth and are called piece-wise smooth.  A 
closed curve on a surface, which can be continuously shrunk to a point,  is called 
reducible.  If all closed curves on a surface are reducible, the surface is called 
simply connected.  The sphere is simply connected but a torus is not. 
 If a surface is not closed, it normally has a space curve as its boundary, as 
for example a hemisphere with the equator as boundary.  It has two sides if it is 
impossible to go from a point on one side to the other along a continuous curve 
that does not cross the boundary curve.  The surface is sometimes called the cap 
of the space curve.   
 If S is a piece-wise smooth surface with two sides in three-dimensional 
space, we can divide it up into a large number of small surface regions such that 
the dimensions of the regions go to zero as the number of regions go to infinity.  
If the regions fill the surface and are not overlapping, then sum of the areas of 
the regions is equal to the area of the surface.  If the function, F is defined on the 
surface, it can be evaluated for some point of each subregion of the surface and 
the sum Σ F ΔS computed.  The limit as the number of regions go to infinity and 
the dimensions of the regions go to zero is surface integral of F over S. 
 
 lim

S
F S F dΔ =∑ ∫∫ S  

 
 The traditional symbol of the double integral is retained because if the 
surface is a plane or the surface is projected on to a plane, then Cartesian 
coordinates can be defined such that the surface integral is a double integral of 
the two coordinates in the plane.  Also, two surface coordinates can define a 
surface and the double integration is over the surface integrals. 
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 In transport phenomena the surface integral usually represents the flow or 
flux of a quantity across the surface and the function F is the normal component 
of a vector or the contracted product of a tensor with the unit normal vector.  
Thus one needs to know the direction of the normal in addition to the differential 
area to calculate the surface integral.  Consider the case of a surface defined as 
a function of two surface coordinates. 
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To see how we arrive at this result, recall the partial derivatives of the 
coordinates of a curve with respect to a parameter is a vector that is tangent to 
the curve.  The magnitude is 
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The vector product has a magnitude equal to the product of the magnitudes and 
the sine of the angle between the vectors.  This gives us the area of a 
parallelogram corresponding to the area of the differential region. 
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The two tangent vectors in the direction of the surface coordinates lie in the 
tangent plane of the surface.  Thus the direction of the vector product is 
perpendicular to the surface.  Inward or outward direction for the normal has not 
yet been specified and will be determined by the sign. 
 
Volume integrals 
 The volume integral of a function F over a volumetric region of space V is 
the limit of the sum of the products of the volume of small volumetric subregions 
of V and the function F evaluated somewhere within each subregion.  
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Change of variables with multiple integrals 
 In Cartesian coordinates the elements of volume dV is simply the volume 
of a rectangular parallelepiped of sides dx1, dx2, dx3 and so 
 
  1 2dV dx dx dx= 3

 
Suppose, however, that it is convenient to describe the position by some other 
coordinates, say ξ1, ξ2, ξ3.  We may ask what volume is to be associated with the 
three small changes dξ1, dξ2, dξ3. 
 The change of coordinates must be given by specifying the Cartesian 
point x that is to correspond to a given set ξ1, ξ2, ξ3, by 
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Then by partial differentiation the small differences corresponding to a change dξi 
are 
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Let dx(j) be the vectors with the components (∂xi/∂ξj) dξj for j = 1, 2, and 3.  Then 
the volume element is  
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is called the Jacobian of the transformation of variables 
 
Vector fields 
 When the components of a vector or tensor depend on the coordinates we 
speak of a vector or tensor field.  The flow of a fluid is a perfect realization of a 
vector field for at each point in the region of flow we have a velocity vector v(x).  
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If the flow is unsteady then the velocity depends on the time as well as position, 
v=v(x,t).   
 Associated with any vector field a(x) are its trajectories, which is the name 
given to the family of curves everywhere tangent to the local vector a.  They are 
solutions of the simultaneous equations 
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Where s is a parameter along the tajectory.  (It will be arc length if a is always a 
unit vector.)  Streamlines of a steady flow are a realization of these trajectories.  
For a time dependent vector field the trajectories will also be time dependent.  If 
C is any closed curve in the vector field and we take the trajectories through all 
points of C, they describe a surface known as the vector tube of the field.  For 
flow fields, it is called a stream tube. 
 
The vector operator ∇ -gradient of a scalar 
 The symbol ∇ (enunciated as “del”) is used for the symbolic vector 
operator whose ith component is ∂/∂xi.  Thus if ∇ operates on a scalar function of 
position ϕ(x) it produces a vector ∇ϕ with components ∂ϕ/∂xi.   
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We should establish that ∇ϕ is indeed a vector.  In the coordinate frame 0123 the 
vector ∇ϕ will have components ∂ϕ/∂xI.  However, 
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since j ij ia l a=  so  ∇ϕ  is a vector. 
 The suffix notation ,i for the partial derivative with respect to xi is a very 
convenient one and will be taken over for the generalization of this operation that 
must be made for non-Cartesian frame of reference.  The notation “grad” for ∇ is 
often used and referred to as the gradient operator.  Thus grad ϕ is the vector 
which is the gradient of the scalar.  The gradient operator can also operate on 
higher order tensors and the operation raises the order by one.  Thus the 
gradient of a vector a is grad a, ∇a, or in component notation ai,j.  ∇ is sometimes 
written ∂/∂x and can be expanded as the vector operator 
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 The gradient of a scalar gives the differential of the scalar in the direction 
of a differential displacement vector dx.  To see this the differential of ϕ(x) = 
ϕ(x1,x2,x3) is the total derivative 
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The unit vector in the direction of dx is u = dx/ds.  The derivative of ϕ in the 
direction of u is  
 

 cosd
ds
ϕ ϕ ϕ θ= ∇ • = ∇u  

 
 If ϕ(x) = c is a surface, then ∇ϕ is normal to the surface.  To prove this, let 
dx be a differential distance on the surface.  The differential of ϕ  along dx is zero 
for any dx on the surface.  This implies that the scalar product of ∇ϕ with any 
vector on the surface is zero or that ∇ϕ has zero component or projection on the 
tangent plane and thus ∇ϕ is normal to the surface.  Also, since ∇ϕ is normal to 
the surface, the derivative of ϕ is a maximum in the direction normal to the 
surface. 
 
The divergence of a vector field 
 The symbolic scalar or dot product of the operator ∇ and a vector is called 
the divergence of the vector field.  Thus for any differentiable vector field a(x) we 
write 
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The divergence is a scalar because it is the scalar product and because it is the 
contraction of the second order tensor ai,j. 
 We will now demonstrate why the ∇• 
operation on a vector field is called the 
divergence.  Suppose that an elementary 
parallelepiped is set up with one corner P at 
x1, x2, x3 and the diagonally opposite one Q 
at x1+dx1, x2+dx2, x3+dx3 as shown in Fig. 
3.7.  The outward unit normal to the face 
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through Q which is perpendicular to 01 is e(1), whereas the outward normal to the 
parallel face through P is –e(1).  Suppose a(x) is a differentiable flux vector field.  
We are going to compute the net flux of a across the bounding surfaces of the 
parallelepiped.  The value of the normal component of a at some point on the two 
faces perpendicular to the 01 direction are 
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Thus if n denotes the outward normal and dS is the area dx2 dx3 of these two 
faces, we have a contribution from them to the surface integral 

S
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where O(dx4) denotes terms proportional to fourth power of dx.  Similar terms 
with ∂a2/∂x2 and ∂a3/∂x3 will be given by contributions of the other faces so that 
for the whole parallelepiped whose volume dV = dx1 dx2 dx3 we have  
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If we let the volume shrink to zero we have 
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 If a is a flux, then the surface integral is the net flux of a out of the volume.  
In particular, let a be the fluid velocity, which can be thought as a volumetric flux.  
Then the divergence of velocity is the volumetric expansion per unit volume.  A 
vector field with identically zero divergence is called solenoidal.  An 
incompressible fluid has a solenoidal velocity field.  If the flux field of a certain 
property is solenoidal there is no generation of that property within the field, for 
all that flows into an infinitesimal element flows out again. 
 If a is the gradient of a scalar function ∇ϕ, its divergence is called the 
Laplacian of ϕ. 
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A function that satisfies Laplace’s equation ∇2ϕ = 0  is called a potential 

function or a harmonic function.  An irrotational, incompressible flow field has a 
velocity that is the gradient of a flow potential.  Also, the steady-state 
temperature field in a homogeneous solid and the steady state pressure 
distribution of a single fluid phase flowing in porous media are solutions of 
Laplace’s equation.  In two dimensions the solutions of Laplace’s equation can 
be found through the use of complex variables. 
 If A is a tensor, the notation div A or ∇•A is sometimes used for the vector 
Aij,i.  The index notation is preferred for tensors. 
 
The curl of a vector field 
 The symbolic vector product or cross product of the vector operator ∇ and 
a vector field a(x) is called the curl of the vector field.  It is the vector 
 
 , (curl ijk k j ia )ε∇× = =a a e  
 
That this definition is a combination of the previously definitions for the ∇ 
operator and the cross product can be seen be carrying out the operations. 
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 The connection between the curl of 
a vector field and the rotation of the vector 
field (it is called rot a in some older texts) 
can be illustrated by calculating the 
circulation of the vector field around a 
closed curve.  Consider a elementary 
rectangle in the 023 plane normal to 01 
with one corner P at (x1, x2, x3) and the 
diagonally opposite one Q at (x1, x2+dx2, 
x3+dx3) as shown in Fig. 3.8.  We wish to 
calculate the line integral or circulation around this elementary closed curve of 
a•t ds, where t is the unit tangent to the curve.  Now the line through P parallel to 
03 has tangent –e(3) and the parallel side through Q has tangent e(3), and each is 
of length dx3.  Accordingly, they contribute to a•t ds an amount 
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Similarly, from the other two sides, there is a contribution, 
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Thus writing dA = dx2 dx3, we have 
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and in the limit 
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The suffix 023 has been put on the integral sign to show that the line integral in a 
023 plane, and the last equation shows that the circulation in the O23 plane is 
equal to the component of the curl in the O1 direction.  This correspondence 
between the curl and circulation gives physical meaning the curl of a vector field.  
It is a measure of the circulation or rotation of the motion.  There is a direction 
associated with circulation, rotation, and curl.  If the circulation around a closed 
curve is in the direction of the closed fingers of the right hand, then the curl is in 
the direction of the thumb. 

A vector field a for which ∇×a = 0 is called irrotational because the 
circulation about any closed curve vanishes. 
 There are several important identities involving the curl operator. 
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The first of these states that if a vector field b is the curl of a vector, i.e., b = ∇×a 
then the vector field b is solenoidal.  The second states that if a vector field b is 
equal to the gradient of a scalar, i.e., b = ∇ϕ then the vector field b is irrotational.   
The last identity has the Laplacian operator ∇2 = ∇•∇ operating on a vector.  The 
result is a vector whose components are equal to the Laplacian of the 
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components, if the coordinates are Cartesian.  This may not be the case in 
curvilinear coordinates. 
 
Green’s theorem and some of its variants 
 The divergence theorem, also called the Gauss’ theorem, or Green’s 
theorem equates the volume integral of the divergence of a vector field a(x) to 
the surface integral of the normal component of the vector. 
 
  

V S

dV dS∇• = •∫∫∫ ∫∫a aw n

 
 During the discussion of the divergence of a vector field, we showed that 
the above relation holds for an infinitesimal volume.  Suppose now that a 
macroscopic volume of space is a composite of the infinitesimal regions.  The 
total volume integral is the sum of the infinitesimal volume integrals.  However, 
the contribution of a•n dS from the touching faces of two adjacent elements of 
volume are equal in magnitude but opposite in sign since the outward normal 
points in opposite directions.  Thus in a summation of a•n dS, the only terms that 
survive are those on the outer surface S, i.e., the surface integral is over the 
exterior surfaces of the macroscopic region. Q.E.D. 
 If a = ∇ϕ we have 
 

 2

V V S S

dV dV dS dS
n
ϕϕ ϕ ϕ ∂

∇ = ∇•∇ = ∇ • =
∂∫∫∫ ∫∫∫ ∫∫ ∫∫nw w  

 
where ∂ϕ/∂n denotes the derivative in the direction of the outward normal.  If the 
scalar ϕ is temperature, this equation says that at steady-state, the integral of the 
net sources of heat in the volume is equal to the flux across the external 
surfaces. 
 
Stokes’ theorem 
 On a surface let C be the curve or a finite number of curves forming the 
complete boundary of an area S.  We assume that the surface is two-sided and 
that S can be resolved into a finite number of regular elements.  Choose a 
positive side of S and let the positive direction along C be that in which an 
observer on the positive side must move along the boundary if he is to have the 
area S always on his left.  At each regular point on the surface let n be the unit 
normal drawn toward the positive side.  Let a and its first derivatives be 
continuous on S.  Stokes’ theorem states that the circulation around a closed 
curve is equal to the surface integral of the normal component of the curl.   
 
  ( )

C S

ds dS• = ∇× •∫ ∫∫a t a nv
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We showed earlier the circulation around a infinitesimal, closed curve was equal 
to the normal component of the curl multiplied by the area of the enclosed 
surface.  We will extend the earlier result for an infinitesimal closed curve 
enclosing an infinitesimal surface to a macroscopic curve and surface.  The 
macroscopic surface will be subdivided into a composite of many infinitesimal 
regions where the earlier result apply.  The summation of the normal component 
of the curl multiplied by the area of the element is equal to the surface integral of 
the normal component of the curl.  However, the quantity a•t ds from the 
touching sides of two adjacent surface elements have equal magnitude but 
opposite sign since the direction of the line integrals are in opposite directions.  
Thus in the summation of the circulations, the only terms that survive are the 
contribution of the external bounding curve, i.e., the circulation is around the 
exterior curve C bounding the surface S.  Q.E.D. 
 
The classification and representation of vector fields 
 We mentioned earlier that a solenoidal vector field is one where ∇•a = 0 
everywhere and an irrotational vector field is one where ∇×a =0 everywhere.  A 
vector field that is the gradient of a scalar a = ∇ϕ is irrotational.  If a vector field is 
both irrotational and solenoidal it is the gradient of a harmonic function, where 
∇•(∇ϕ) = ∇2ϕ =0.  It can be proven that if a vector field is both irrotational and 
solenoidal, it is uniquely determined in a volume V if it is specified over S, the 
surface of V. 
 There other types of named vector fields are discussed by Aris. 
 
Irrotational vector fields 
 The vector field a is irrotational if its curl vanishes everywhere.  By Stokes’ 
theorem the circulation around any closed curve also vanishes.  Also, an 
irrotational vector field can be expressed as the gradient of a scalar. 
 

  

0

0 an irrotational field
C

ds

ϕ

⎫∇× = ⎪
⎪• = ⎬
⎪
⎪= ∇ ⎭

∫
a

a t a

a

v

 
 The velocity field of motions where the viscous effects are insignificant 
compared to inertial effects and the flow is initially irrotational can be 
approximated as an irrotational velocity field. 
 
Solenoidal vector fields 
 A solenoidal vector field is defined as one in which the divergence 
vanishes.  This implies that the flux across a closed surface must also vanish.  A 
vector identity states that the divergence of the curl of a vector is zero.  Thus a 
continuously differentiable solenoidal vector field has the following three 
equivalent characteristics. 
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0

0 a solenoidal field
S

dS

⎫∇• = ⎪
⎪• = ⎬
⎪
⎪= ∇× ⎭

∫∫
a

a n a

a A

w

 
 The velocity field of motions where the effects of compressibility are 
insignificant can be approximated as a solenoidal vector field.  The surface 
integral of velocity vanishing over any closed surface means that the net 
volumetric flow across closed surfaces is zero.  Incompressible flow fields can be 
expressed as the curl of a vector potential.  Two-dimensional, incompressible 
flows have only one nonzero component of the vector potential and this is 
identified as the stream function. 
 
Helmholtz’ representation 
 We found that an irrotational vector is the gradient of a scalar potential 
and a solenoidal vector is the curl of a vector potential.  Here we show that any 
vector field with sufficient continuity is divisible into irrotational and solenoidal 
parts, and so is expressible in terms of a scalar and a vector potential.  The 
fundamental problem in the analysis of a vector field is the determination of these 
potentials and their expression in terms of the essential characteristics of the 
vector, namely divergence, curl, discontinuities, and boundary values.  For when 
the potentials are known the vector itself can be determined by differentiation.  
The following analysis is taken from H. B. Phillips, Vector Analysis, John Wiley & 
Sons, 1933.  The following nomenclature will differ somewhat in that the vector is 
expressed as the negative of the gradient of a scalar. Also, the vector field of 
interest will be denoted as F.  Bold face capital letters will also be used for other 
vector quantities.  Also the equations have the 4π factor of electromagnetism in 
mks units rather than the factors εo and εo c2 of the SI units. 
 Let V be a region of space where the vector field F has piecewise 
continuous second derivatives, S1 be surfaces of discontinuity of F, and S be the 
bounding surface of V.  The Helmholtz’s theorem states that F can be expressed 
in terms of the potentials. 
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 The vectors I and J are not arbitrary.  They are subject to the equation of 
continuity ∇•A = 0.  The effect of this condition is to make I and J behave like 
space and surface currents of something which is nowhere created or destroyed.  
In the electromagnetic field they usually represent currents of electricity.  In 
hydrodynamic fields they represent vorticity.  If A is everywhere solenoidal, the 
following three equations must then be everywhere satisfied. 
 

  
0

0
0ds

∇• =
•Δ +∇• =
×Δ • =

I
n I J
n J t

 
 Considering I and J as representing currents, the first equation expresses 
that the amount which flows out of a small region is equal to the amount which 
flows in.  The second equation expresses that the total flow from a portion of a 
conducting surface into space and along the surface is zero.  The third equation 
expresses that the flow from one sub-region across a curve on a conducting 
surface is equal to the flow into the adjacent sub-region.  These three equations 
thus express that I and J, considered as space and surface currents, represent a 
flow of something which is conserved.  For I and J to have this property the 
above discussion shows it is necessary and sufficient that A be everywhere 
solenoidal.  In hydrodynamics, the field I corresponds to vorticity and it clearly is 
solenoidal because it is the curl of velocity. 
 
Vector and scalar potential 
 The previous section showed that a vector field can be determined from 
the divergence and curl of the vector field and the values on surfaces of 
discontinuities and bounding surfaces.  The integral equations are useful for 
developing analytical solutions for simple systems.  However, in hydrodynamics 
the vorticity is generally a unknown quantity.  Thus it is useful to express the 
potentials as differential equations that are solved simultaneously for the 
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potentials and vorticity.  The differential equations are derived by substituting the 
potentials into the expressions for the divergence and curl. 
 

 
2

2

4
4

ϕ π ρ

π

∇ = −

∇ = −A I
 

 
 In two-dimensional vector fields the vector potential A and the vector I has 
a nonzero component only in the third direction.  In hydrodynamics the nonzero 
component of the vector potential is the stream function 4πI corresponds to the 
vorticity, which has only one nonzero component. 
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Assignment 3.1: Particle velocity and acceleration 
 Suppose a particle fixed on the surface of a steady-rotating sphere with 
radius, R, has a constant speed, v =v.  
a) Show that its acceleration is perpendicular to its velocity. 
b) Show that the acceleration has a radial (from the center of the sphere) 

component 2 / R . a vρ = −
c) Let the magnitude of the angular velocity be ω .  Express the centrifugal 

acceleration (direction perpendicular to the axis of rotation), ra  in terms of R, 
ω and the angle of particle from the axis of rotation. 

 
Assignment 3.2: Differential area and volume 
a) Express the differential of area in term of the differential of the surface 

coordinates for a spherical surface using the spherical polar coordinate 
system.   

b) Obtain the differential volume elements in cylindrical and spherical polars by 
the Jacobian and check with a simple geometrical picture. 

 
Assignment 3.3: Differential operators 
a) Derive the expression for the Laplacian of a scalar in Cartesian coordinates 

from the definition of the gradient and divergence. 
b) Prove that: ∇•(ϕa) = ∇ϕ• a + ϕ(∇• a) 
c) Let x be the Cartesian coordinates of points in space and r = |x|.  Calculate 

the divergence and curl of x and the gradient and Laplacian of r and 1/r.  Note 
any singularities. 

d) Prove the identities involving the curl operator. 
e) Suppose a rigid body has the velocity field ( )o .  Show that 

the curl of this velocity field is 2
( )t ω= + × −v v x x

ω∇× =v . 
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