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 The algebra of vectors and tensors will be described here with Cartesian 
coordinates so the student can see the operations in terms of its components 
without the complexity of curvilinear coordinate systems. 
 
Definition of a vector 
 Suppose xi , i.e., (x1, x2, x3), are the Cartesian coordinates of a point P in a 
frame of reference, 0123.  Let 0123  be another Cartesian frame of reference 
with the same origin but defined by a rigid rotation.  The coordinates of the point 
P in the new frame of reference is jx  where the coordinates are related to those 
in the old frame as follows.   
 

 1 1 2 2 3 3

1 1 2 2 3 3

j ij i j j j

i ij j i i i

x l x l x l x l x

x l x l x l x l x

= = + +

= = + +
 

 
where lij are the cosine of the angle between the old and new coordinate 
systems.  Summation over repeated indices is understood when a term or a 
product appears with a common index. 
 Definition. A Cartesian vector, a, in three dimensions is a quantity with 
three components a1, a2, a3 in the frame of reference 0123, which, under rotation 
of the coordinate frame to 0123 , become components 1 2 3, ,a a a , where 
 
 j ija l a= i  
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Examples of vectors 
 In Cartesian coordinates, the length of the position vector of a point from 
the origin is equal to the square root of the sum of the square of the coordinates.  
The magnitude of a vector, a, is defined as follows. 
 
 ( )1/ 2

i ia a=a  
 

A vector with a magnitude of unity is called a unit vector.  The vector, a/|a|, 
is a unit vector with the direction of a.  Its components are equal to the cosine of 
the angle between a and the coordinate axis.  Some special unit vectors are the 
unit vectors in the direction of the coordinate axis and the normal vector of a 
surface. 
 
Scalar multiplication 
 If α is a scalar and a is a vector, the product αa is a vector with 
components, αai, magnitude α|a|, and the same direction as a.  
 
Addition of vectors – Coplanar vectors 
 If a and b are vectors with components ai and bi, then the sum of a and b 
is a vector with components, ai+bi. 
 The order and association of the addition of vectors are immaterial. 
 

  ( ) (
+ = +

+ + = + +

a b b a
a b c a b c)

0

1
=

 
The subtraction of one vector from another is the same as multiplying one 

by the scalar (-1) and adding the resulting vectors. 
If a and b are two vectors from the same origin, they are colinear or 

parallel if one is a linear combination of the other, i.e., they both have the same 
direction.  If a and b are two vectors from the same origin, then all linear 
combination of a and b are in the same plane as a and b, i.,e., they are coplanar.  
We will prove this statement when we get to the triple scalar product. 

 
Unit vectors 
 The unit vectors in the direction of a set of mutually orthogonal coordinate 
axis are defined as follows. 
 

  (1) (2) (3)

1 0
0 , 1 , 0
0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

e e e
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The suffixes to e are enclosed in parentheses to show that they do not denote 
components.  A vector, a, can be expressed in terms of its components, (a1, a2, 
a3) and the unit vectors. 
 
  1 (1) 2 (2) 3 (3)a a a= + +a e e e
 
This equation can be multiplied and divided by the magnitude of a to express the 
vector in terms of its magnitude and direction. 
 

 

( )

31 2
(1) (2) (3)

1 (1) 2 (2) 3 (3)

aa a

λ λ λ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

= + +

a a e e e
a a a

a e e e

 

 
where λi are the directional cosines of a.   

A special unit vector we will use often is the normal vector to a surface, n.  
The components of the normal vector are the directional cosines of the normal 
direction to the surface. 
 
Scalar product – Orthogonality 
 The scalar product (or dot product) of two vectors, a and b is defined as 
 
 cosθ• =a b a b  
 
where θ is the angle between the two vectors.  If the two vectors are 
perpendicular to each other, i.e., they are orthogonal, then the scalar product is 
zero.  The unit vectors along the Cartesian coordinate axis are orthogonal and 
their scalar product is equal to the Kronecker delta. 
 

 
( ) ( )

1,
0,

i j ij

i j
i j

δ• =

=⎧
= ⎨ ≠⎩

e e
 

 
 The scalar product is commutative and distributive.  The cosine of the 
angle measured from a to b is the same as measured from b to a.  Thus the 
scalar product can be expressed in terms of the components of the vectors. 
 

 
( ) ( )1 (1) 2 (2) 3 (3) 1 (1) 2 (2) 3 (3)

i j ij

i i

a a a b b b

a b

a b

δ

• = + + • + +

=

=

a b e e e e e e
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The scalar product of a vector with itself is the square of the magnitude of the 
vector. 
 

 
2

2

cos0

i ia a

• =

=

• =

=

a a a a

a
a a

a

 

 
 The most common application of the scalar product is the projection or 
component of a vector in the direction of another vector.  For example, suppose 
n is a unit vector (e.g., the normal to a surface) the component of a in the 
direction of n is as follows. 
 
 cosθ• =a n a  
 
Directional Cosines for Coordinate Transformation 
 The properties of the directional cosines for the rotation of the Cartesian 
coordinate reference frame can now be easily illustrated.  Suppose the unit 
vectors in the original system is e(i) and in the rotated system is ( )je .  The 
components of the unit vector, ( )je , in the original reference frame is lij.  This can 
be expressed as the scalar product. 
  

 1 2 3 , 1, 2

, , 1, 2,3
j j j

ij

l l l j

l i j
(j) (1) (2) (3)

(i) (j)

e e e e

e e

= + + =

• = =

,3
 

 
Since ( )je  is a unit vector, it has a magnitude of unity. 
 
 ( ) ( ) 1( ) 1( ) 2( ) 2( ) 3( ) 3( )1 ,i j i j j j j j j jl l l l l l l l j(j) (j)e e• = = = + + =1,2,3  
 
Also, the axis of a Cartesian system are orthorgonal. 
 
  

 

0 , if
1, if

thus

ij

i j
i j(i) (j)

(i) (j)

e e

e e δ

≠⎧
• = ⎨ =⎩

• =
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 1 1 2 2 3 3 , , 1, 2,3ki kj i j i j i j

ij

l l l l l l l l i j(i) (j)e e

δ

• = = + + =

=
 

 
Vector Product 
 The vector product (or cross product) of two vectors, a and b, denoted as 
a×b, is a vector that is perpendicular to the plane of a and b such that a, b, and 
a×b form a right-handed system.  (i.e., a, b, and a×b have the orientation of the 
thumb, first finger, and third finger of the right hand.)  It has the following 
magnitude where θ is the angle between a and b. 
 
 sinθ× =a b a b  
 
The magnitude of the vector product is equal to the area of a parallelogram two 
of whose sides are the vectors a and b. 

Since the vector product forms a right handed system, the product b×a 
has the same magnitude but opposite direction as a×b, i.e., the vector product is 
not commutative, 
 
  × = − ×b a a b
 

The vector product of a vector with itself or with a parallel vector is zero or 
the null vector, i.e., a×a=0.  A quantity that is the negative of itself is zero.  Also, 
the angle between parallel vectors is zero and thus the sine is zero. 
 Consider the vector product of the unit vectors.  They are all of unit length 
and mutually orthogonal so their vector products will be unit vectors.  
Remembering the right-handed rule, we therefore have 
 

(2) (3) (3) (2) (1)

(3) (1) (1) (3) (2

(1) (2) (2) (1) (3

× = − × =

× = − × =

× = − × =

e e e e e

e e e e e

e e e e e
)

)

)
)e

 

 
The components of the vector product can be expressed in terms of the 
components of a and b and applying the above relations between the unit 
vectors. 
 

( ) (
( ) ( ) (

1 (1) 2 (2) 3 (3) 1 (1) 2 (2) 3 (3)

2 3 3 2 (1) 3 1 1 3 (2) 1 2 2 1 (3)

a a a b b b

a b a b a b a b a b a b

× = + + × + +

= − + − + −

a b e e e e e e

e e
 

  
The permutations of the indices and signs in the expression for the vector 
product may be difficult to remember.  Notice that the expression is the same as 
that for the expansion of a determinate of the matrix, 
 

 2-5



 
(1) (2) (3)

1 2 3

1 2 3

a a a
b b b

e e e
. 

 
Expansion of determinants are aided by the permutation symbol, εijk. 
 

  
0, if any two of , , are the same

1, if is an even permutation of 1, 2, 3
1, if is an odd permutation of 1, 2, 3

ijk

i j k
ijk
ijk

ε
⎧
⎪= +⎨
⎪ −⎩

 
The expression for the vector product is now as follows. 
 
 ( )ijk i j ka bε× =a b e  
 
Velocity due to rigid body rotations 
 We will show that the velocity field of a rigid body can be described by two 
vectors, a translation velocity, v(t), and an angular velocity, ω.  A rigid body has 
the constraint that the distance between two points in the body does not change 
with time.  The translation velocity is the velocity of a fixed point, O, in the body, 
e.g., the center of mass.  Now consider a new reference frame (coordinate 
system) with the origin at point O that is translating with respect to the original 
reference frame with the velocity v(t).  The rotation of the body about O is defined 
by the angular velocity, ω, i.e., with a magnitude ω and a direction of the axis of 
rotation, n, such that the positive direction is the direction that a right handed 
screw advances when subject to the rotation, . ω=ω n.  Consider a point P not on 
the axis of rotation, having coordinates x in the new reference frame.  The 
velocity of P in the new reference frame has a magnitude equal to the product of 
ω and the radius of the point P from the axis of rotation.  This radius is equal to 
the magnitude of x and the sine of the angle between x and ω, i.e., |x| sinθ.  The 
velocity of point P in the new reference frame can be expressed as 
 

 sin
ω
ω θ

= ×

=

v x
v x  

 
 The velocity field of any point of the rigid body in the original reference 
frame is now 
 
  ( )( )t oω= + × −v v x x
 
where xo is the coordinates of point O in the original reference frame.  Since this 
equation is valid for any pair of points in the rigid body, the relative velocity ∆v 
between a pair of points separated by ∆x can be expressed as follows. 
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 ω∆ = ×∆v x  
 
Conversely, if the relative velocity between any pair of points is described by the 
above equation with the same value of angular velocity, then the motion is due to 
a rigid body rotation. 
 
Triple scalar product 
 The triple scalar product is the scalar product of the first vector with the 
vector product of the other two vectors.  It is denoted as (abc) or [abc]. 
 
  ( ) (≡ • ×abc a b c)

ε

 
Recall that b×c has a magnitude equal to the area of a parallelogram with sides 
b and c and a direction normal to the plane of b and c.  The scalar product of this 
normal vector and the vector a is equal to the altitude of the parallelepiped with a 
common origin and sides a, b, and c.  The triple scalar product has a magnitude 
equal to the volume of a parallelepiped with a common origin and sides a, b, and 
c.  The sign of the triple scalar product can be either positive or negative.  If a, b, 
and c are coplanar, then the altitude of the parallelepiped is zero and thus the 
triple scalar product is zero. 
 The triple scalar product can be expressed in terms of the components by 
using the earlier definitions of the vector product and scalar product. 
 

  
( )

( )

( )

( ) ( )

ijk i j k

m m

ijk m i j m k ijk m i j mk ijk k i j

ijk i j k

b c

a

a b c a b c a b c

a b c

ε

ε ε δ

ε

× =

=

• × = • = =

=

b c e

a e

a b c e e

 
From the definition of the permutation symbol, the triple scalar product is 

unchanged by even permutations of a, b, and c but have the opposite algebraic 
sign for odd permutations.  Also, if any two of a, b, and c are identical, then 
permutation of the two identical vectors results in a triple scalar products that are 
identical and also opposite in sign.  This implies that the triple scalar product is 
zero if two of the vectors are identical. 
 
Triple vector product 
 
 The triple vector product of vectors a, b, and c results from the repeated 
application of the vector product, i.e., a×(b×c).  Since b×c is normal to the plane 
of a and b and a×(b×c) is normal to b×c, a×(b×c) must be in the plane of a and 
b.  It is left as an exercise to show that  
 
  ( ) ( ) ( )× × = • − •a b c a c b a b c
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Second order tensors 
 A second order tensor can be written as a 3×3 matrix. 
 

  
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

 
A tensor is a physical entity that is the same quantity in different coordinate 
systems.  Thus a second order tensor is defined as an entity whose components 
transform on rotation of the Cartesian frame of reference as follows. 
 
 pq ip jq ijA l l A=  
 
 If Aij=Aji the tensor is said to be symmetric and a symmetric tensor has 
only six distinct components. If Aij=-Aij  the tensor is said to be antisymmetric and 
such a tensor is characterized by only three nonzero components for the 
diagonal terms, Aii, are zero.  The tensor whose ijth element is Aji is called the 
transpose A’ of A.  The determinant of a tensor is the determinant of the matrix 
of its components. 
 
 1 2 3det ijk i j kA A Aε=A  
 
Examples of second order tensors 
 A second order tensor we have already encountered is the Kronecker 
delta δij.  Of its nine components, the six off-diagonal components vanish and the 
three diagonal components are equal to unity.  It transforms as a tensor upon 
transforming its components to a rotated frame of reference. 
 

 
pq ip jq ij

ip iq

pq

l l

l l

δ δ

δ

=

=

=

 

 
because of the orthogonality relation between the directional cosines lij.  In fact, 
the components of δij in all coordinates remain the same.  δij is called the isotropic 
tensor for that reason.  The transport coefficients (e.g., thermal conductivity) of 
an isotropic medium can be expressed as a scalar quantity multiplying δij. 
 If a and b are two vectors, the set of nine products, aibj=Aij, is a second 
order tensor, for 
 

 
( )pq p q ip i jq j ip jq i j

ip jq ij

A a b l a l b l l a b

l l A

= = =

=
. 
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An important example of this is the momentum flux tensor.  If ρ is the density and 
v is the velocity, ρ vi is the ith component in the direction Oi.  The rate at which 
this momentum crosses a unit area normal to Oj is the tensor, ρ vi vj. 
 
Scalar multiplication and addition 
 If α is a scalar and A a second order tensor, the scalar product of α and A 
is a tensor αA each of whose components is α times the corresponding 
component of A. 
 The sum of two second order tensors is a second order tensor each of 
whose components is the sum of the corresponding components of the two 
tensors.  Thus the ijth component of A+B is Aij + Bij.  Notice that the tensors must 
be of the same order to be added; a vector can not be added to a second order 
tensor.  A linear combination of tensors results from using both scalar 
multiplication and addition. αA + βB is the tensor whose ijth component is αAij + 
βBij.  Subtraction may therefore be defined by putting α = 1, β = -1. 
 Any second order tensor can be represented as the sum of a symmetric 
part and an antisymmetric part.  For 
 

 ( ) ( )1 1
2 2ij ij ji ij jiA A A A A= + + −  

 
and changing i and j in the first factor leaves it unchanged but changes the sign 
of the second.  Thus, 
 

 ( ) ( )1 1
2 2

= + + −A A A' A A'  

 
represents A as the sum of a symmetric tensor and antisymmetric tensor. 
 
Contraction and multiplication 
 As in vector operations, summation over repeated indices is understood 
with tensor operations.  The operation of identifying two indices of a tensor and 
so summing on them is known as contraction.  Aii is the only contraction of Aij, 
 
  11 22 33iiA A A A= + +
 
and this is no longer a tensor of the second order but a scalar, or a tensor of 
order zero.  The scalar Aii is known as the trace of the second order tensor A.  
The notation tr A is sometimes used.  The contraction operation in computing the 
trace of a tensor A is analogous to the operation in the calculation the magnitude 
of a vector a, i.e., .|a|2 = a•a = ai ai = a1 a1 + a2 a2 + a3 a3. 
 If A and B are two second order tensors, we can form 81 numbers from 
the products of the 9 components of each.  The full set of these products is a 
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fourth order tensor.  Contracted products result in second order or zero order 
tensors.  We will not have an occasion to use products of tensors in our course. 
 The product Aij aj of a tensor A and a vector a is a vector whose ith 
component is Aij aj.  Another possible product of these two is Aij aI .  These may 
be written A•a and a•A , respectively.  For example, the diffusive flux of a 
quantity is computed as the contracted product of the transport coefficient tensor 
and the potential gradient vector, e.g., q = -k•∇T. 
 
The vector of an antisymmetric tensor 
 We showed earlier that a second order tensor can be represented as the 
sum of a symmetric part and an antisymmetric part.  Also, an antisymmetric 
tensor is characterized by three numbers.  We will later show that the 
antisymmetric part of the velocity gradient tensor represents the local rotation of 
the fluid or body.  Here, we will develop the relation between the angular velocity 
vector, ω, introduced earlier and the corresponding antisymmetric tensor. 
 Recall that the relative velocity between a pair of points in a rigid body was 
described as follows. 
 

ω∆ = ×∆v x  
 
We wish to define a tensor Ω that also can determine the relative velocity. 
 

 ω∆ = ×∆
= ∆ •Ω

v x
x

 

 
The following relation between the components satisfies this relation. 
 

 1
2

ij ijk k

k ijk ij

ε ω

ω ε

Ω =

= Ω
 

 
Written in matrix notation these are as follows. 
 

 
1 3

2 3

3 2 1

0
, 0

0

2

1

ω ω ω
ω ω ω

ω ω ω

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Ω = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

ω  

 
The notation vec Ω is sometimes used for ω.  In summary, an antisymmetric 
tensor is completely characterized by the vector, vec Ω. 
 
Canonical form of a symmetric tensor 
 We showed earlier that any second order tensor can be represented as a 
sum of a symmetric part and an antisymmetric part.  The symmetric part is 
determined by 6 numbers.  We now seek the properties of the symmetric part.  A 

 2-10



theorem in linear algebra states that a symmetric matrix with real elements can 
be transformed by its eigenvectors to a diagonal matrix with real elements 
corresponding the eigenvalues.  (see Appendix A of Aris.)  If the eigenvalues are 
distinct, then the eigenvector directions are orthogonal.  The eigenvectors 
determine a coordinate system such that the contracted product of the tensor 
with unit vectors along the coordinate axis is a parallel vector with a magnitude 
equal to the corresponding eigenvalue.  The surface described by the contracted 
product of all unit vectors in this transformed coordinate system is an ellipsoid 
with axes corresponding to the coordinate directions. 
 The eigenvalues and the scalar invariants of a second order tensor can be 
determined from the characteristic equation. 
 

  

( ) 2 3

11 22 33

22 33 23 32 33 11 31 13 11 22 12 21

det

where

det

ij ijA

A A A tr
A A A A A A A A A A A A

λδ λ λ λ− = Ψ − Φ + Θ−

Θ = + + =
Φ = − + − + −

Ψ =

A

A
 
Assignment 2.1 
 

a) Relative velocity of points in a rigid body.  If x and y are two points inside 
a rigid body that is translating and rotating, determine the relation between 
the relative velocity of these two points as a function of their relative 
positions.  If x and y are points on a line parallel to the axis of rotation, 
what is their relative velocity?  If x and y are points on opposite sides of 
the axis of rotation but with equal distance, r, what is their relative 
velocity?  Draw diagrams. 

b) Prove that: a•(b×c) = (a×b)•c 
c) Show a•(b×c) vanishes identically if two of the three vectors are 

proportional of one another. 
d) Show that if a is coplanar with b and c, then a•(b×c) is zero. 
e) Prove that: ( ) ( ) ( )× × = • − •a b c a c b a b c  
f) Prove that the contracted product of a tensor A and a vector a, A•a, 

transforms under a rotation of coordinates as a vector. 
g) Show that you get the same result for relative velocity whether you use ω 

or Ω for the rotation of a rigid body. 
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