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Chapter 12  Numerical Simulation

The classical exact solutions of the Navier-Stokes equations are valuable
for the insight they give and as a exact result that any approximate method
should be able to duplicate with to an acceptable precision.  However, if we limit
ourselves to exact solutions or even approximate perturbation or series solutions,
a vast number of important engineering problems will be beyond reach.  To meet
this need, a number of computational fluid mechanics (CFM) codes have become
commercially available.  A student could use the CFM code as a virtual
experiment to learn about fluid mechanics.  While this may be satisfactory for
someone who will become a design engineer, this is not sufficient for the
researcher who may wish to solve a problem that has not been solved before.
The user usually has to treat the CFM code as a "black box" and accept the
result of the simulation as correct.  The researcher must always be questioning if
any computed result is valid and if not, what must be done to make it valid.
Therefore I believe Ph.D. students should know how to develop their own
numerical simulators rather than be just a user.

We will start with a working FORTAN and MATLAB code for solving very
simple, generic problems in 2-D.  The student should be able to examine each
part of the code and understand everything with the exception of the algorithm for
solving the linear system of equations.  Then the student will change boundary
conditions, include transient and nonlinear capabilities, include curvilinear
coordinates, and compute pressure and stresses.

The Stream Function – Vorticity Method
Two-dimensional flow of an incompressible, Newtonian fluid can be

formulated with the stream function and vorticity as dependent variables.
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We will begin developing a generic code by assuming steady, creeping (zero
Reynolds number) flow with specified velocity on the boundaries in a rectangular
domain.  The PDE are now,
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This is a pair of linear, elliptic PDEs.  The boundary conditions with specified
velocity are
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The boundary conditions at a plane of symmetry are
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The PDE and definitions are made dimensionless with respect to
reference quantities such that the variables are of the order of unity.
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We have four dimensionless groups and two reference quantities.  We can
specify two of the groups to equal unity and the other two are equal to the aspect
ratio or its square.
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The PDE and definitions with the * dropped are now as follows.
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Finite Difference Approximation
The PDE and BC will be solved using a finite difference method.  A grid

point formulation rather than a grid block formulation will be used since the
dependent variables are specified at the boundaries rather than their flux or
normal derivative.  The computation domain will be discretized such that the
boundary conditions and dependent variables are evaluated at x1, x2, …, xJM1,
xJMAX and y1, y2, …, yJM1, yJMAX.  The finite difference grid appears as follows.



12-4

The unit square is now discretized into JMAX by JMAX grid points where
the boundary conditions and dependent variables will be evaluated.  The grid
spacing is 1/( 1)JMAXδ = − .  The first and last row and column are boundary
values.

The partial derivatives will be approximated by finite differences.  For
example, the second derivative of vorticity is discretized by a Taylor's series.
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The finite difference approximation to the PDE at the interior points results
in the following set of equations.

Finite difference grid for discretizing PDE (grid point formulation)
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The vorticity at the boundary is discretized and expressed in terms of the
components of velocity at the boundary, the stream function values on the
boundary and a stream function value in the interior grid.  (A greater accuracy is
possible by using two interior points.)  The stream function at the first interior
point  (i=2) from the x boundary is written with a Taylor's series as follows.
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The choice of sign depends on whether x is increasing or decreasing at the
boundary.  Similarly, on a y boundary,
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The boundary condition on the stream function is specified by the normal
component of velocity at the boundaries.  Since we have assumed zero normal
component of velocity, the stream function is a constant on the boundary, which
we specify to be zero.

The stream function at the boundary is calculated from the normal
component of velocity by numerical integration using the trapezodial rule, e.g.,
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Solution of Linear Equations
The finite difference equations for the PDE and the boundary conditions

are a linear system of equations with two dependent variables.  The dependent
variables at a xi, yj grid point will be represented as a two component vector of
dependent variables,
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The pair of equations for each grid point can be represented in the following form
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Each coefficient is a 2×2 matrix.  For example,

, ,1,1 , , ,1,2 ,
, ,

, ,2,1 , , ,2,2 ,

i j i j i j i j
i j i j

i j i j i j i j

e e w
e e w

ψ
ψ

+� �
= � �+� �

e u

The components of the 2×2 coefficient matrix are the coefficients from the
difference equations.  The first row is coefficients for the stream function equation
and the second row is coefficients for the vorticity equation.  The first column is
coefficients for the stream function variable and the second column is the
coefficients for the vorticity variable.  For example, at interior points not affected
by the boundary conditions,
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The coefficients for the interior grid points adjacent to a boundary are modified as
a result of substitution the boundary value of stream function or the linear
equation for the boundary vorticity into the difference equations.  The stream
function equation is coupled to the vorticity with the eij coefficient and the vorticity
equation is coupled to the stream function through the boundary conditions.  For
example, at a x = 0 boundary, the coefficients will be modified as follows.
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If the boundary condition is that of zero vorticity as on a surface of symmetry, it is
necessary to only set to zero the coefficient that multiplies the boundary value of
vorticity, i.e.,
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The linear system of equations and unknowns can be written in matrix
form by ordering the equations with the i index changing the fastest, i.e., i = 2, 3,
…, JMAX-1.  The linear system of equations can now be expressed in matrix
notation as follows.
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The non-zero coefficients of coefficient matrix A for JMAX = 5 is illustrated
below.  Since the first and last grid points of each row and column of grid points
are boundary conditions, the number of grid with pairs of unknowns is only 3×3.
Only one grid point is isolated from boundaries.  The i,j location of the coefficients
become clearer if a box is drawn to enclose each 2×2 coefficient.
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Most of the elements of the coefficient matrix are zero.  In fact, the
coefficient matrix is a block pentadiagonal sparse matrix and only the nonzero
coefficients need to be stored and processed for solving the linear system of
equations.  The non-zero coefficients of the coefficient matrix are stored with the
row-indexed sparse storage mode and the linear system of equations is solved
by preconditioned biconjugate gradient method (Numerical Recipes, 1992).

The row-indexed sparse matrix mode requires storing the nonzero
coefficients in the array, sa(k), and the column number of the coefficient in the
coefficient matrix in the array, ija(k), where k = 1, 2, ….  The indices that are
needed to identify the coefficients are the i,j grid location (i,j = 2, 3, …, JMAX-1),
the m equation and dependent variable identifier (m = 1 for stream function; = 2
for vorticity), and the IA row index of the coefficient matrix (IA = 1, 2, 3, 4, …,
2(JMAX-2)2).  The coefficient matrix has two equations for each grid point, the
first for the stream function and the second for vorticity.  The total number of
equations is NN = 2(JMAX-2)2.

The diagonal elements of the coefficient array are first stored in the sa(k)
array.  The first element of ija(k), ija(1) = NN+2 and can be used to determine the
size of the coefficient matrix.  The algorithm then cycles over the pairs of rows in
the coefficient matrix while keeping track of the i,j locations of the grid point and
cycling over equation m = 1 and 2.  The off-diagonal coefficients are stored in
sa(k) and the column number in the coefficient matrix stored in ija(k).  As each
row is completed, the k index for the next row is stored in the first NN elements of
ija.

A test problem for this code is a square box that has one side sliding as to
impart a unit tangential component of velocity along this side.  All other walls are
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stationary.  The stream function, vorticity, and velocity contours for this problem
with a 20×20 grid is illustrated below.
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Assignment 12.1 Use the code in the /MatlabScripts/numer/ directory of the
CENG501 web site as a starting point.  Add the capability to include arbitrarily
specified normal component of velocity at the boundaries.  The stream function
at the boundary should be numerically calculated from the specified velocity at
the boundary.  Test the code with Couette and Plane-Poiseuille flows first in the x
and then in the y directions.  Display vector plot of velocity and contour plots of
stream function and vorticity.  Show you analysis and code.

Assignment 12.2  Form teams of two or three and do one of the following
additions to the code.  Find suitable problems to test code.
1. Calculate pressure and stress.  Test problems: Couette and Plane-

Poiseuille flows.
2. Calculate transient and finite Reynolds number flows.  Test problems:

Plate suddenly set in motion and flow in cavity.
3. Add option for cylindrical polar coordinates. Use the coordinate

transformation, lnz r= .  Test problems: line source and annular rotational
Couette flow.

Form new teams of two or three with one member that developed each
part of the code.  Include all features into the code.  Test the combined features.
Work together as a team to do the following simulation assignments.

0 5 10 15 20 25
0

5

10

15

20

25
Velocity Arrays

           Velocity vectors for square with top side sliding
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Assignment 12.3  Boundary layer on flat plate.  Compute boundary layer
velocity profiles and drag coefficient and compare with the Blasius solution.
What assumption is made about the value of the Reynolds in the Blasius
solution?

Assignment 12.4  Flow around cylinder.  Assume potential flow far from the
cylinder.  Calculate drag coefficient as a function of Reynolds number and
compare with literature.

Assignment 12.5  Flow around cylinder.  Find the Reynolds number at which
boundary layer separation occurs.

Assignment 12.7  Flow around cylinder.  Find the Reynolds number for the
onset of vortex shedding.

FORTRAN on Owlnet

Modern FORTRAN compilers in the MSWindows are very user friendly.
They have built in project workspace routines, documentation, and integrated
editor and debugger.  If you use the FORTRAN compiler on Owlnet, it is useful to
know how to use make files to compile and link FORTRAN code.  The following
is an example make file.  You may give it the name, makefile, with no extension.

f77 -c streamf1.f;
f77 -c bc1.f;
f77 -c coef1.f;
f77 -c asolve.f;
f77 -c atimes.f;
f77 -c dsprsax.f;
f77 -c dsprstx.f;
f77 -c linbcg.f;
f77 -c snrm.f;
f77 -o exe streamf1.o bc1.o coef1.o asolve.o atimes.o
dsprsax.o dsprstx.o linbcg.o snrm.o

You have to give yourself permission to execute the make file with the one-time
command,

chmod +x makefile

The line with the –c option compiles the source code and makes an object code
file with the extension of .o.  The line with the –o option links the object files into
the executable file called exe.  This executable file can be executed by typing its
name, exe, on the command line.
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This example makefile is not very efficient because it will compile every
source code listed.  There are instructions to recompile only the source code that
has been modified or "touched" since the last time the makefile was invoked.
However, I do not recall the instructions.

If you are not familiar with FORTRAN, you should get a paperback book
on FORTRAN-77 or FORTRAN-90.  An example is D. M. Etter, Structured
FORTRAN 77 for Engineers and Scientists.  The following is a tutorial from the
CAAM 211 webpage.
http://www.caam.rice.edu/~caam211/JZoss/project1.html

Computer facilities that have compilers usually have an interactive
debugger.  However, I have not found how to access the debugger on owlnet.
The debugger with the Microsoft FORTRAN Powerstation (now Compaq
FORTRAN) is very easy to use.
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Transients and Finite Reynolds Number
The development of numerical simulators should start with a problem for

which exact solutions exist so that the numerical algorithm can be verified.
Steady, creeping flow has many exact solutions and thus it was used as the
starting point for developing a numerical simulator for the Navier-Stokes
equations.  The student should verify that their code is able to duplicate exact
solutions to any desired degree of accuracy.

The next stage in the development of the code is to add transients and
finite Reynolds numbers.  Finite Reynolds number results in nonlinear terms in
the Navier-Stokes equation.  Algorithms for solving linear systems of equations
such as the conjugate gradient methods solves linear systems in one call to the
routine.  Nonlinear terms need to be iterated or lagged during the transient
solution.  Thus nonlinear steady state flow may be solved as the evolution of a
transient solution from initial conditions to steady state.

The transient and nonlinear terms now need to be included when making
the vorticity equation dimensionless.
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Two of the dimensionless groups can be set to unity by expressing the reference
time in terms of the ratio of the characteristic velocity and characteristic length.
The remaining dimensionless group is the Reynolds number.
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The dimensionless equation for vorticity with the * dropped is
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The convective derivative can be written in conservative form by use of the
continuity equation.
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We will first illustrate how to compute the transient, linear problem before
tackling the nonlinear terms.  Stability of the transient finite difference equations
is greatly improved if the spatial differences are evaluated at the new, n+1, time
level while the time derivative is evaluated with a backward-difference method.
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Recall that the finite difference form of the steady state equations were
expressed as a system of equations with coefficients, a, b, , ect.  The vorticity
equation for the i,j grid point will be rewritten but now with the transient term
included.  It is convenient to solve for ∆w rather than wn+1 at each time step.

2
1 1 1 1 1 1

1, 1, , 1 , 1 , ,

1, 1, , 1 , 1 ,

Ren n n n n n
i j i j i j i j i j i j

n n n n n
i j i j i j i j i j

a w b w c w d w e w w
t

f a w b w c w d w e w

δ+ + + + + +
+ − + −

+ − + −

∆ + ∆ + ∆ + ∆ + ∆ − ∆
∆

= − − − − −

We can see that this equation is of the same form as before with only the
coefficients e and f of the vorticity equation modified.
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Since the variable in the linear system of equations is now ∆w rather than w, the
equations for the stream function also need to be modified.
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These modifications to the coefficients should be made after the
coefficients are updated for convection and boundary conditions.

The numerical calculations will start from some initial value of vorticity and
proceed to steady state.  The size of the time step is important if accuracy of the
transient solution is of interest.  The truncation error of the time finite difference

expression is approximately the product 
2

2
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t
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∂

.  The time step size can be

chosen as to keep this value approximately constant.  Thus the time step size will
be chosen as to limit the maximum change in the magnitude of w over a time
step.  Let ∆wmax be the maximum change in w over the previous time step and
∆wspec be the specified value of the desired maximum change in w.  The new
time step can be estimated from the following expression.
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w
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The initial time step size needs to be specified, and the new time step may be
averaged with the old or constrained to increase by not greater than some factor.

Now that we have a means of calculating the transients solution, this
approach can be used to treat the nonlinear terms.  Recall that when the
equations were linear, the system of equations had constant coefficients and the
conjugate-gradient linear solver solved the linear system of equations.

=A x F

The convective derivatives have a product of velocity and vorticity, which can be
expressed as a product of the derivative of stream function and vorticity.  One
approximation would be to use the value of the stream function from the old time
step to calculate the coefficients for the new time step.  An alternative is use a
predictor-corrector approach, similar to the Runge-Kutta solution for quasilinear
ordinary differential equations.  The "predictor" step estimates the solution at the
new time step using the coefficients calculated from the stream function of the
previous time step.  This gives an estimate of the stream function at the new time
step.  This estimated stream function is then used to evaluate the coefficients for
the "corrector" step.  The steps in the calculations are as follows.
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The choice of the finite difference expression for the convective derivative
is very important for the stability of the solution.  We will illustrate here treatment
of only the x derivative.  Suppose i-1, i, and i+1 are the grid points where the
stream function and vorticity are evaluated and i – ½ and i+ ½ are the mid-points
where the velocity-vorticity products are evaluated.

( ) ( )1/ 2 1/ 2i i
u w u wu w

x x
+ −

−∂ ≈
∂ ∆

The dependent variables are known only at the grid points and interpolation will
be needed to evaluate in between location.  If the product is evaluated at i – ½
and i+ ½  by using the arithmetic average of the values at the grid points on
either side, the numerical solution will tend to oscillate if the convective transport
dominates the diffusive (viscous) transport.  It is preferable to determine the
upstream direction from the sign of ui+1/2  or ui-1/2  and use the vorticity from the
upstream grid point.  This is illustrated below.

ui-1/2 = 0.5*(u(i,j)+u(i-1,j))
if ui-1/2 >0 then

(uw)i-1/2 = ui-1/2 wi-1 ; b'=b+δ Re ui-1/2
else

(uw)i-1/2 = ui-1/2 wi ; e'=e+δ Re ui-1/2
endif

ui+1/2 = 0.5*(u(i,j)+u(i+1,j))
if uI+1/2 >0 then

(uw)i+1/2 = ui+1/2 wi ; e'=e - δ Re ui+1/2
else

(uw)i+1/2 = ui+1/2 wi+1 ; a'=a - δ Re ui+1/2
endif

The y-direction will be similar except the aspect ratio, α, must be included.
These modifications to the coefficients must be made before the coefficients are
updated for the boundary conditions.

Calculation of Pressure

The vorticity-stream function method does not require calculation of
pressure to determine the flow field.  However, if the force or drag on a body or a
conduit is of interest, the pressure must be computed to determine the stress
field.  Here we will derive the Poisson equation for pressure and determine the
boundary conditions using the equations of motion.  If the pressure is desired
only at the boundary, it may be possible to integrate the pressure gradient
determined from the equations of motion.  The dimensionless equations of
motion for incompressible flow of a Newtonian fluid are as follows.
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2

2

* * ** * * * ( * *)
* * *

1* * * *

where

* , * , * , * , *

,

d
dt t t

P
Re

U Pt t P L
U L L U

U LP p g z Re

ρ
ρρ

µ

∂ ∂= + •∇ = + ∇ • =
∂ ∂

−∇ + ∇

= = = = ∇ = ∇

= − =

v v vv v v v

v

v xv x

Here all coordinates were scaled with respect to the same length scale.  The
aspect ratio must be included in the final equation if the coordinates are scaled
with respect to different length scales.  We will drop the * and use x and y for the
coordinates and u and v as the components of velocity.

The following derivation follows that of Hoffmann and Chiang (1993).  The
equations of motion in 2-D in conservative form is as follows.

2 2 2

2 2

2 2 2

2 2

( ) ( ) 1

( ) ( ) 1

u u u v P u u
t x y x Re x y

v u v v P v v
t x y y Re x y

� �∂ ∂ ∂ ∂ ∂ ∂+ + = − + +� �∂ ∂ ∂ ∂ ∂ ∂� �

� �∂ ∂ ∂ ∂ ∂ ∂+ + = − + +� �∂ ∂ ∂ ∂ ∂ ∂� �

The Laplacian of pressure is determined by taking the divergence of the
equations of motion.  We will carry out the derivation step wise by first taking the
x-derivative of the x-component of the equations of motion.

( )
2 2 2 2

2
2 2

12 2u u u u u v v v u u Pu u v u
t x x x x x y x y x y x y x Re x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �+ + + + + + = − + ∇� �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �
Two pair of terms cancels because of the equation of continuity for
incompressible flow.

( )

2 2

2

2 2 2 2
2

2 2

0

0

Thus

1
Re

u u v
x x y

v u u vu u u
x y x x x y

u u u v u u Pu v u
t x x x x y x y x x

� �∂ ∂ ∂+ =� �∂ ∂ ∂� �

� �∂ ∂ ∂ ∂ ∂+ = + =� �∂ ∂ ∂ ∂ ∂ ∂� �

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �+ + + + = − + ∇� � � �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �
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Similarly, the y-component of the equations of motion become

( )
2 2 2 2

2
2 2

1v v v u v v Pv u v
t y y y y x x y y Re y
� � � �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + = − + ∇� � � �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �

The x and y-components of the above equations are now added together and
several pairs of terms cancels pair-wise.

2 2

2

2 2

2

2 2 2 2 2 2

2 2 2 2 2 2

0

0

0

0

u v
t x y

u v u v
x x y x x y

u v u v
x y y y x y

u u v v u v u v
x x y y x y x x y y x y

� �∂ ∂ ∂+ =� �∂ ∂ ∂� �

� �∂ ∂ ∂ ∂ ∂+ = + =� �∂ ∂ ∂ ∂ ∂ ∂� �

� �∂ ∂ ∂ ∂ ∂+ = + =� �∂ ∂ ∂ ∂ ∂ ∂� �

� � � � � � � �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = + + + =� � � � � � � �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �� � � �

Therefore the equations reduce to

22 2 2

2 22u v u v P P
x y y x x y

� �� �∂ ∂ ∂ ∂ ∂ ∂� � + + = − +� �� �� �∂ ∂ ∂ ∂ ∂ ∂� � � � � �

The left-hand side can be further reduced by consideration of the continuity
equation as follows.

2 22

22

2 0

from which

2

u v u v u v
x y x y x y

u v u v
x y x y

� � � �∂ ∂ ∂ ∂ ∂ ∂� �+ = + + =� � � �� �∂ ∂ ∂ ∂ ∂ ∂� �� � � �

� �∂ ∂ ∂ ∂� � + = −� �� �∂ ∂ ∂ ∂� � � �

Upon substitution, we have

2 2

2 2 2P P u v u v
x y y x x y

� � � �∂ ∂ ∂ ∂ ∂ ∂− + = −� � � �∂ ∂ ∂ ∂ ∂ ∂� �� �

This equation can be written in terms of the stream function.



12-19

22 2 2 2 2

2 2 2 22P P
x y x y x y

ψ ψ ψ� �� �∂ ∂ ∂ ∂ ∂
� �+ = −� �∂ ∂ ∂ ∂ ∂ ∂� �	 
� �

This is the equation when the coordinates have the same reference length.  If the
coordinates are normalized with respect to different lengths, then the equation is
as follows.

22 2 2 2 2
2 2

2 2 2 22P P
x y x y x y

ψ ψ ψα α
� �� �∂ ∂ ∂ ∂ ∂
� �+ = −� �∂ ∂ ∂ ∂ ∂ ∂� �	 
� �

The Poisson equation for pressure needs to have boundary conditions for
solution.  The equations of motion give an expression for the pressure gradient.
The normal derivative of pressure at the boundary can be determined for the
Neumann-type boundary condition.  The equations of motion usually simplify at
boundaries if the boundary has no slip BC or if it has parallel flow in the direction
either parallel or normal to the boundary.  For example, for no-slip

2 2

2

2

2

, at , 0

1 , at , 0

P v y c u v
x Re y
P u x c u v
y Re x

α

α

∂ ∂= = = =
∂ ∂
∂ ∂= = = =
∂ ∂

If the flow is parallel and in the direction normal to the boundary

2 2

2

2

2

, , 0, ( )

1 , , 0, ( )

P u y c v u u y
x Re y
P v x c u v v x
y Re x

α

α

∂ ∂= = = =
∂ ∂
∂ ∂= = = =
∂ ∂

Cylindrical-Polar Coordinates

The code for the numerical solution of the Navier-Stokes equations in
Cartesian coordinates can be easily modified to cylindrical-polar coordinates.
The coordinate transformation is first illustrated for the Laplacian operator.

2
2

1 22 2

1 1 , , 0 or r r r
r r r r

ψ ψψ θ θ
θ

∂ ∂ ∂� �∇ = + ≤ ≤ ≤ ≤� �∂ ∂ ∂� �

The independent variables are made dimensionless with respect to the boundary
parameters.
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* * * *2

1 1

, , 1 , 0 1
o

r rr r
r r

θθ β θ
θ

= = ≤ ≤ = ≤ ≤

The Lapacian operator with the dimensionless coordinates after dropping the * is
now,

2
2

2 2 2 2
1

1 1 1 1 , 1 , 0 1
o

r r
r r r r r

ψ ψψ β θ
θ θ

� �∂ ∂ ∂� �∇ = + ≤ ≤ ≤ ≤� �� �∂ ∂ ∂	 
� �

The radial coordinate is transformed to the logarithm of the radius.

( )
( )

2 1

2 2

2 2

ln 1ln , 0 1,
ln ln /

exp /

1

rz r z
r r

r z
dz

r dr z r z

r
r r r r z

γ γ
β

γ
γ

ψ γ ψ

= = ≤ ≤ =

=
∂ ∂ ∂= =
∂ ∂ ∂

∂ ∂ ∂� � =� �∂ ∂ ∂� �

The Laplacian operator is now as follows,

2 2 2 2
2

2 2 2 2 2
1

1 1, 0 1, 0 1,
o

z
r r z r

γ ψ α ψψ θ α
θ θ

� �∂ ∂∇ = + ≤ ≤ ≤ ≤ =� �∂ ∂� �

The finite difference expression for the Laplacian will be same as that for
Cartesian coordinates with ( ),z θ  substituted for (x,y) except for 2γ  and r2 factors.

( ) ( )

0 1, 0 1, , 1, 2, ,
1

1
1 , 1

i j

i j

z i j JMAX

JMAX
z i j

θ

δ

δ θ δ

≤ ≤ ≤ ≤ =

=
−

= − = −

�

The curl operator is modified from that in Cartesian coordinates.
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( )

( )
2

2 2 2 2

2 2 2 2

1

r

r

r

v
r

v
r r z
r v vw

r r r
r v v

r z r

r z r

θ

θ

θ

α ψ
θ

ψ γ ψ

α
θ

γ α
θ

γ ψ α ψ
θ

∂=
∂

∂ ∂= − = −
∂ ∂
∂ ∂= −

∂ ∂
∂ ∂= −

∂ ∂
∂ ∂= − −
∂ ∂

The vorticity boundary conditions with the transformed coordinates is for
the z boundary,

( )
2

1 2 12 2

2 2 BC
BC BC BC rvw v

r r rθ
γ γ αψ ψ

δ δ θ
∂= − − −
∂

�

and for the θ boundary,

( ) ( )2

1 2 12 2 2

2 2
BC

BC BC BC
r

rv
w v

r r r z
θα α γψ ψ

δ δ
∂

= − − ± +
∂

The stream function at the boundaries are expressed different from that in
Cartesian coordinates.

( )
( )

/ , at boundary

/ , at boundary
rd r v d z

d r v dzθ

ψ α θ

ψ γ θ

=

= −

The convective terms are expressed different from that in Cartesian
coordinates.
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( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

2

2 1/ 2 1/ 2

1/ 2 1/ 2

1

i i

j j

u w r u w
x r r

r u w
r z

r u w r u w
r

v w v w
y r

v w v w
r

γ

γ
δ

αα
θ

α
δ

+ −

+ −

∂ ∂
�

∂ ∂
∂

=
∂

� �≈ −� �

∂ ∂
�

∂ ∂

� �≈ −
� �

The code should be written so one can have either Cartesian coordinates
or transformed cylindrical-polar coordinates.  A parameter will be needed to
identify the choice of coordinates, e.g. icase=1 for Cartesian coordinates and
icase=2 for transformed cylindrical-polar coordinates.  Also, another parameter
should be specified to identify the choice of boundary conditions, e.g., ibc=1 for
radial flow, ibc=2 for Couette flow, and ibc=3 for flow around a cylinder.

Test cases with known solutions should be used to verify the code.  The
first case is radial, potential flow from a line source and the second is Couette
flow in the annular region between two cylindrical surfaces.

( ) ( )

1/
radial flow

0

0
Couette flow

1/ / 1/

r

r

v r
v

v
v r r

θ

θ β β

= �
�= �

= �
�= − − �

Flow around a cylinder needs a boundary condition for the flow far away
from the cylinder.  The flow very far away may be uniform translation.  However,
this condition may be so far away that it may result in loss of resolution near the
cylinder.  Another boundary condition that may be specified beyond the region of
influence of the boundary layer is to use the potential flow past a cylinder.  This
boundary condition will not be correct in the wake of cylinder where the flow is
disturbed by the convected boundary layer buts its influence may be minimized if
the outer boundary is far enough.

( )
( )

2

2

1 1/ cos
Potential flow past cylinder

1 1/ sin

rv r

v rθ

θ

θ

�= − �
�

= − + ��

Potential flow will not be a valid approximation along the θ boundaries close to
the cylinder.  Here, one may assume a surface of symmetry, at least for the
upstream side.


