
Chapter 11 Flow with Free Surface 
 
 We have already encountered free surfaces in systems such as the 
drainage of a liquid along a wall.  In this case the free surface was a material 
surface and the boundary condition was that of continuity of pressure and shear 
stress.  The same boundary conditions would be used for wind-driven waves on 
water and the shape of the vortex formed when water drains from a bathtub.  The 
dimensionless numbers of importance are the Reynolds number Re /N U Lρ μ= , 

Froude number , and gravity number 2 /FrN U g= L
2

G
g LN ρ
μ

= Re

Fr

N
U N

= .  These 

mentioned systems are of a macroscopic scale compared to surface forces and 
rheology and thus surface tension, surface elasticity, and surface viscosity were 
not significant.  However, when the system dimensions become about 1 cm or 
less surface forces are no longer negligible and play an important role in the 
shape of the interface and in transport processes.  The capillary number 

/CaN Uμ σ=  and Bond number 2 /BoN g Lρ σ=  introduced in Chapter 6 become 
important dimensionless groups that quantify the ratio of viscous/capillary and 
gravity/capillary forces.  As the dimensions decrease to about 1 mm we are in the 
range of capillary phenomena where surface tension and contact angles become 
important (e.g., the rise of a wetting liquid in a small capillary).  As the 
dimensions decrease to 1 μm we are in the colloidal regime and not only is 
capillarity a dominant effect but also particles have spontaneous motion due to 
Brownian motion and thin films display optical interference as in the color of soap 
films.  When the dimensions decrease to the range of 1 nm, it is necessary to 
include surface forces due to electrostatic, van der Waals, steric and hydrogen 
bonding effects to describe the thermodynamics and hydrodynamics of the fluid 
interfaces.  At this scale the phases can no longer be assumed to be 
homogenous right up to the interface.  The overlap of the inhomogeneous 
regions next to the interfaces results in forces that either attract or repel the 
interfaces. 
 
Boundary Conditions at a Fluid-Fluid Interface 
 Analysis of macroscopic systems usually assume the fluid-fluid interface 
to simply be a surface of discontinuity in the density and viscosity of the bulk 
phases with no discontinuity in stress, (i.e., continuous pressure and shear stress 
across the surface).  If there is no significant mass transfer, the surface is also a 
material surface and thus follows the motion of the fluid particles at the surface. 
 Systems with a length scale about a centimeter or less and having fluid-
fluid interfaces can no longer neglect the discontinuity in stress across the 
interface.  A momentum balance across the interface is needed to describe the 
stress at the boundary.  Also, if the system has surface-active components that 
affect the surface tension and/or surface viscosity, then a material balance is also 
needed to determine the composition of the interfacial region.  A general 
treatment of the momentum balance at fluid-fluid interfaces is given in Chapter 
10 of Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics.  We 
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summarize the results here assuming no slip at the surface and a Newtonian 
surface constitutive relation.  The terms in the momentum balance are given on 
the left side and its description is given on the right side. 
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The surface constitutive equation for a Newtonian interface is (Slattery, 1990)  
 
 ( ) 2sσ κ ε ε⎡ ⎤= + + ∇ • +⎣ ⎦

s s
sT v sI e  

 
The surface properties are a function of the composition of the interface.  The 
species mass balance at the interface is given as (Edwards, et al., 1991) 
 

 ( ) ( )s sn
s n s n n nR

t
∂Γ

+∇ • Γ +∇ • • = + •
∂

s
sv I j n j  

 
 The parallel between the mass and momentum balances and constitutive 
equations for interfaces and bulk fluids should be noted (Gurmeet Singh, 1996).  
This analogy with bulk fluids is more complete if a surface pressure due to the 
reduction of the surface or interfacial tension due to adsorption is defined. 
 
  ( )oπ σ σ= − Γ
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The surface properties are as follows. 

Symbol Property 
γ  mass per unit area 

nΓ  surface excess concentration of species n 
σ  surface or interfacial tension 
π  surface pressure 
κ  surface dilatational viscosity 
ε  surface shear viscosity 

ia b tαβ
αβ α  surface tensors 

αβε  surface permutation symbol 
,iU sv  surface velocity 

s
nj  surface diffusional flux 

H mean curvature 
K Gaussian or total curvature 
 
 The normal component of stress.  The discontinuity in the normal 
component of the total stress tensor for a hydrostatic system is as follows. 
 
 [ ][ ] 2p H σ= =nT n n  
 
where H is the mean curvature of the surface and σ is the surface or interfacial 
tension.  The mean curvature can be expressed as a function greatest and least 
curvatures of curves in the surface κ1 and κ2 or the principal curvatures in the 
directions of the principal curvature. 
 
  1 22H κ κ= +
 
The curvature in one of the principal directions can be expressed in terms of the 
equation for the arc of the curve.  Suppose one principal direction is in the x-y 
plane. 
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Thus the curvature can be determined from the coordinates of the surface.  We 
see that when the slope is small, the curvature can be approximated by the 
second derivative.  A surface that is translational symmetric has zero curvature in 
one direction (e.g., surface of a cylinder).  The two principal curvatures are equal 
on the surface of a sphere.  A 
saddle shaped surface can have 
zero curvature because the 
principal curvatures have opposite 
signs. 
 The difference in pressure 
across a curved interface is called 
the Laplace pressure after the 
Laplace-Young equation.  This is a 
classical equation used to 
determine the shape of a static 
meniscus or to determine the 
surface tension from the shape of a 
static meniscus such as the 
pendant drop shown here.  This is a 
drop of water suspended from the 
tip of a capillary tube surrounded by 
air.  Water surrounded by oil would 
be similar.  Suppose we let the 
origin our coordinate system be the 
bottom of the drop.  The system is an axisymmetric and has two radaii of 
curvature.  

 
Pendant water drop in air (Adamson, 1990) 
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The system is hydrostatic so the pressure profile can be expressed as the 
pressure jump at the origin and the difference in hydrostatic pressure along the 
profile. 
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where opΔ Laplace pressure at the apex of the drop and ro is the radius of 
curvature of the apex of the drop. 
 

The surface or interfacial tension is found using the pendant drop analysis 
by estimating the value of the tension that best fits the calculated meniscus 
shape with the shape captured in a video image.   
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 When the pendent drop apparatus is designed so the meniscus is pinned 
to either the inner or outer edge of the tip of the needle, the contact angle does 
not influence the shape of the meniscus.  If the drop rests on a flat surface, it is 
called a sessile drop and the elevation of the profile from the surface is a function 
of the contact angle that the meniscus makes with the substrate. 
 A characteristic length scale can be determined for the hydrostatic 
meniscus.  Suppose that the datum of elevation corresponds to the apex of the 
drop.  The hydrostatic profile is described by the following dimensionless Young-
Laplace equation. 
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If the dimensionless group is specified to equal unity, a characteristic length is 
defined. 
 

 L
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This characteristic length, called the capillary constant, is sometimes defined with 
a factor of 2 multiplying the surface tension.  It has a value of 2.7 mm for the 
water-air interface at ambient conditions.  This length is representative of the 
meniscus height of water next to a vertical wall that is wetted by water. 
 
 The dimensionless differential equations are now as follows. 
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The system of ODEs is computed from the apex of the drop where the 
dimensionless radius of curvature at the apex is a parameter, B.  The value of B 
is adjusted until the best fit of the measured drop shape is obtained.  
 
Assignment 11.1 Estimation of surface 
tension.  Estimate the surface tension of a dilute 
surfactant solution, given the shape of a pendant 
drop shown here and data stored in the file, 
shape.dat in the Surface directory.  You may use 
the code in pendant.m in the Surface directory to 
generate the dimensionless pendant drop 
profiles.  Use units.m to plot the drop shape.  
Note: The program is not automated.  Pendant.m 
computes the dimensionless shape and units.m 
converts it to cgs units to compare with the 
measured profile.   
 
 Surface tension gradients.  If the system has only two components, i.e., 
the components comprising each phase then the surface or interfacial tension 
and contact angle is all that is required to describe the surface effects.  However, 
if the system has another component that is surface active as to adsorb at the 
interface and reduce the surface or interfacial tension, then the interface must be 
treated as a two dimensional phase for which a mass and momentum balance is 
required.  The mass per unit area of the surface-active component is the surface 
excess concentration or the amount 

 
Vertical, rigid soap film (Mysels, et al., 
1959) 
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adsorbed.  If the system is not at equilibrium, i.e., not hydrostatic, then 
concentration gradients may exist in the interface that result in surface tension 
gradients in the interface.  The difference between the clean interface tension 
and the local tension is called the surface pressure.  The gradients in the surface 
pressure contribute to tangential stresses in the interface.  It has the same role in 
the surface momentum balance as pressure gradient in the momentum balance 
for three-dimensional flow.  For example, as liquid drains from a soap film, the 
drag of the liquid on the interface stretches the interface.  The resulting 
expansion of the interface reduces the surface concentration of soap on the 
interfaces. This establishes a surface tension or surface pressure gradient 
between the interface in the film and the interface in the meniscus.  This gradient 
tends to oppose the motion of the interface and thus tends to maintain the 
interface immobile as the liquid drains from between the two near-immobile 
interfaces.  At the same time this surface tension gradient tends to pull the 
interface from the meniscus back into the film.  This leads to a turbulent motion of 
the interface at the boundary between the meniscus and the film.  This effect 
called "marginal regeneration" is a Marangoni effect caused by the surface 
tension gradient. 
 Surface viscosity.  Adsorption of a surface-active component at an 
interface not only changes the surface tension or surface pressure but can also 
affect the surface rheology.  Material adsorbed at interfaces form two-
dimensional surface phases that may be gasous, expanded liquid, condensed 
liquid, or solid.  The surface viscosity can change by more than a order of 
magnitude at a transition from one surface phase to another.  This is analogous 
to the change in viscosity of bulk fluids at phase transitions.  The attached figure 
shows vertical soap film drainage of a system is similar to that of the mobile film 
except that dodecanol was added to the sodium dodecyl sulfate (SDS) solution.  
The dodecanol screens the electrostatic repulsion of the SDS at the interface and 
promote the formation of a condensed liquid monolayer.  This monolayer is rigid 
in this system and the films drains much more slowly than in the case of the 
mobile film.  The mechanism of this difference in the drainage of foam films has 
been explained in terms of the surface tension gradient driven instability and the 
stabilizing effect of a large surface viscosity (Joye, et al., 1994, 1996). 
 
Film Drainage and Deposition with Laplace Pressure 
 In Chapter 8 we modeled the gravity drainage of a film along a wall 
neglecting the pressure between the liquid and gas because the mean curvature 
of the system was very small compared to the length of the film.  Now suppose 
that we have a film that in connected to a curved meniscus.  The meniscus may 
be moving along a substrate and depositing a film or gathering up a deposited 
film, e.g., a bubble in a capillary tube.  Alternatively, the substrate may be 
stationary with respect to the meniscus and the film is draining into the mensicus, 
e.g. foam or emulsion film between two bubbles or drops.  For simplicity, we will 
assume that we have a pure system so there are no surface tension gradients or 
effects of surface viscosity.  We will assume that the system is translational 
invarient.  A schematic of some possible system configurations are shown below. 
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Configration of a bubble in a tube (Breatherton, 1961) 

 
 
 

 
 

 
Dip coating (Miller and Neogi, 1985) 

 
Film between bubbles and bubble against 
plate 
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 The continuity equation and equations of motion were specialized for 
lubrication and film flow in Chapter 6.  The equations to O(ho/L) or O(ho/L)2 are as 
follows. 
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 The systems with a solid substrate will have the boundary condition of no-
slip at the solid boundary and zero shear stress at the pure-fluid interface.  In the 
case of two bubbles or drops coming into contact, the mid-plane is a plane of 
symmetry and has zero shear stress.  It will be assumed the fluid interface is 
immobile in this latter case.  The variable, h, is the half-film thickness in this case.  
Since this case has zero shear on one surface and no slip on the other surface, 
the solution will be derived as for the cases with the solid substrate.  The 
boundary conditions are as follows. 
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 The pressure is uniform across the thickness of the film so the velocity 
profile can be determined by integrating the equation of motion over the film 
thickness and applying the boundary conditions. 
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The average velocity is substituted into the equation of continuity.  
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The pressure can be expressed in terms of the thickness by application of the 
Young-Laplace equation assuming that the system has no dependence on x2.  
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Substituting the pressure into the 
previous equation results in a forth 
order quasilinear partial differential 
equation for the film thickness.  
These equations can be solved 
directly by numerical simulation.  The 
equations will be specialized for 
special cases. 
 Drainage of foam film.  
Deriving the equations in cylindrical 
coordinates and dropping the terms 
that originated from the substrate 
velocity and gravity can describe the 
drainage of the thin, horizontal, 
circular film between two bubbles.  If 
the interface remains plane-parallel, 
the Reynolds film drainage model in 
Chapter 9 can describe the drainage.  The shape if the interface described by the 
above equations is "dimpled" and was investigated by Joye, et al., (1992).  The 
pressure gradient in the film would be zero if the film were flat.  The change in 
curvature where the film merges into the meniscus results in a large pressure 
gradient.  This pressure gradient drains liquid from this region and this drainage 
causes a local thinning of the film.  This leaves a thicker film or "dimple" in the 
center of the film.  This axisymmetric drainage is unstable if the surface shear 
viscosity is small and the dimple will slip out to one side (Joye, et al., 1994, 
1996).  
 Bubble in a capillary.  The motion of a bubble in a small capillary was 
investigated by Bretherton in 1961.  With steady state, absence of gravity, and 
small slope in the film, the differential equations for the thickness of the film 
simplify to  
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where b is the asymptotic thickness of the film that is left on the wall far from the 
meniscus.  Near the front of the film where the thickness is very large compared 
to the asymptotic thickness, the right-hand side of the above equation can be 
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approximated by zero.  The general solution in this region for some constants A, 
B, and C is as follows. 
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This thick portion of the film merges with the spherical cap at the front of the 
bubble.  Thus the asymptotic film thickness, b, can be determined by requiring 
this portion of the film to have the same mean curvature as the front of the 
bubble. 
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The constants of integration of the general solution of this film profile was 
determined matching with the shape of the meniscus at the front of the bubble 
with the solution by numerical integration.  The asymptotic thickness of the film 
deposited by the advancing meniscus thus was found to be 
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where R is the mean radius of curvature of the spherical cap at the front of the 
bubble.   
 In the thin film region, CD, the film thickness is approximately equal to the 
asymptotic thickness and the differential equation can be linearized. 
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The asymptotic film thickness is approached if the dimensionless length of the 
bubble is large compared to unity.  It is assumed that this is the case.  Different 
parts of the general solution apply to the front and back of the bubble.   
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The integration constant for the front part of the film, α, can be set to unity by a 
suitable choice of the origin of the axis.  One 
integration constant for the rear of the bubble 
can be set to unity by suitable choice of the 
origin of the coordinate axis but the other must 
be specified to match the thickness of the film 
that is approaching the rear of the bubble.  If 
this thickness is the asymptotic thickness, b, 
then there is a unique solution for the film at 
the back of the bubble.  These profiles shows 
oscillations in thickness as the rear of the 
bubble is approached.  If the approach 
thickness is b, then the minimum thickness is 
0.716b.  The capillary suction at the back of 
the bubble results in a local thinning of the film 
similar to the local thinning that occurs in the 
foam film between two bubbles. 

Under static conditions, the Laplace pressures at the front and back of the 
bubble are both equal to 2σ/R with opposite sign, so the net pressure drop is 
zero.  Under dynamic conditions the film profiles and thus the curvature at the 
front and back of the bubble are different.  The 
dissimilar shapes of the front and back of the 
bubble results in a net dynamic pressure drop 
across the bubble. 
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 Train of Bubbles or Foam in a Smooth 
Capillary.  The resistance to flow of a single bubble 
in a tube is the starting point for the flow of a 
coarse foam through a tube.  The contributing 
factors to the pressure drop are the slugs of liquid, 
interface deformation as described by Bretherton, 
and the additional resistance due to surface 
tension gradients.  (Hirasaki and Lawson, 1985).  
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Assume that the tube is small enough that 
the bubble train consists of bubbles 
separated by individual lamella.  In this case 
the radius of curvature of the meniscus is 
smaller that the radius of the capillary.  
However, it can be determined from the 
capillary radius, bubble size, and foam 
quality or gas fraction.  The comparison of 
the apparent viscosity for the flow of foam 
through the capillary tube is shown in the 
attached figure.  These results show that 
interfacial deformation alone greatly 
underestimate the resistance to flow.  
Analysis shows that surface tension 
gradients have a significant effect in 
retarding the motion of the interface of 
bubbles when surface active material is 
present.  The following figure shows the 
dimensionless interfacial velocity for different 
values of the dimensionless surface tension 
gradient group.  The final figure shows that 
satisfactory agreement with theory can be 
obtained if surface tension gradient effects 
are taken into account. 
 
Assignment 11.2 Thickness of entrained film  Compare the thickness of the 
film entrained by a plate pulled vertically out of a bath of liquid assuming one or 
the other of the two assumptions: (1) surface tension has no effect and (2) the 
capillary number is much less than unity.  Make the thickness dimensionless with 
respect to a common reference length and compare the results as a function of 
the capillary number.  You may accept the solution by Landau and Levich. 
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