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INTRODUCTION 
 This course is designed as a first level graduate course in transport 
phenomena.  Undergraduate courses generally start with simple example 
problems and lead to more complex problems.  With this approach, the student 
must learn the fundamental principles by induction.  The approach used here is 
to teach the fundamental principles and then deduce the analysis for example 
problems.  The example problems are classical problems that should be familiar 
to all Ph.D. Chemical Engineering graduates.  These problems will be presented 
not only as an exercise with analytical or numerical solutions but also as 
simulated experiments which are to be interpreted and graphically displayed for 
presentation. 
 
Prerequisites and text books 
 Students in this class are expected to have a background corresponding 
to a BS degree in Chemical Engineering.  This includes a course in multivariable 
calculus, which covers the algebra and calculus of vectors fields on volumes, 
surfaces, and curves of 3-D space and time.  Courses in ordinary and partial 
differential equations are a prerequisite.  Some elementary understanding of fluid 
mechanics is expected from a course in transport phenomena, fluid mechanics, 
or physics.  It is assumed that not all students have the prerequisite background.  
Thus, material such as vector algebra and calculus will be briefly reviewed and 
exercise problems assigned that will require more reading from the student if 
they are not already familiar with the material. 
 The two required textbooks for this course are R. Aris, Vectors, Tensors, 
and the Basic Equations of Fluid Mechanics and Bird, Stewart, and Lightfoot, 
Transport Phenomena.  Several of the classical problems are from S. W. 
Churchill, Viscous Flows, The Practical Use of Theory.  The classical textbook, 
Feyman, Leighton, and Sands, The Feyman Lectures on Physics, Volume II is 
highly recommended for its clarity of presentation of vector fields and physical 
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phenomena.  The students are expected to be competent in MATLAB, 
FORTRAN, and EXCEL and have access to Numerical Recipes in FORTRAN. 
 The following table is a suggested book list for independent studies in 
transport phenomena. 
 
Table 1.1 Transport phenomena book list 
Author Title Publisher Year 
L.D. Landau and 
E. M. Lifshitz 

Fluid Mechanics, 2nd Ed. Butterworth 1987 

V. G. Levich Physicochemical Hydrodynamics Prentice-Hall 1962 
S. Chandrasekhar Hydrodynamics and 

Hydromagnetic Stability 
Dover 1961 

H. Schlichting Boundary Layer Theory McGraw-Hill 1960 
H. Lamb Hydrodynamics Dover 1932 
S. Goldstein Modern Developments in Fluid 

Dynamics 
Dover 1965 

W. E. Langlois Slow Viscous Flow Macmillan 1964 
J. Happel,  
H. Brenner 

Low Reynolds Number 
Hydrodynamics 

Kluwer 1973 

G. K. Batchelor An Introduction to Fluid 
Mechanics 

Cambridge 1967 

S.-I. Pai Viscous Flow Theory I Laminar 
Flow 

Van Nostrand 1956 

M. Van Dyke Perturbation Methods in Fluid 
Mechanics 

Academic Press 1964 

S. W. Churchill Inertial Flows Etaner 1980 
S. W. Churchill Viscous Flows Butterworths 1988 
R. F. Probstein Physicochemical Hydrodynamics Butterworth-

Heinemann 
1989 

S. Middleman An Introduction to Fluid Dynamics John Wiley 1998 
S. Middleman An Introduction to Mass and Heat 

Transfer 
John Wiley 1998 

E. L. Koschmeider Benard Cells and Taylor Vortices Cambridge 1993 
W.-J. Yang Handbook of Flow Visualization Taylor & Francis 1989 
W.-J. Yang Computer-Assisted Flow 

Visualization 
CRC Press 1994 

A. J. Chorin Computational Fluid Mechanics Academic Press 1989 
A. J. Chorin,  
J. E. Marsden 

A Mathematical Introduction to 
Fluid Mechanics 

Springer-Verlag 1993 

L. C. Wrobel, 
C. A. Brebbia 

Computational Modeling of Free 
and Moving Boundary Problems, 
Vol. 1 Fluid Flow 

Computational 
Mechanics 
Publications 

1991 

M. J. Baines, 
K. W. Morton 

Numerical Methods for Fluid 
Dynamics 

Oxford 1993 

W. E. Schiesser, Computational Transport Cambridge 1997 
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C. A. Silebi Phenomena 
N. Ida,  
J. P. A. Bastos 

Electro-Magnetics and Calculation 
of Fields 

Springer 1997 

L. G. Leal Laminar Flow and Convective 
Transport Processes 

Butterworth 1992 

W. M. Deen Analysis of Transport Phenomena Oxford 1998 
C. S. Jog Foundations and Applications of 

Mechanics, Vol. I, Continuum 
Mechanics 

CRC Press 2002 

C. S. Jog Foundations and Applications of 
Mechanics, Vol. II, Fluid 
Mechanics 

CRC Press 2002 

 
Scalar, vector and tensor fields 
 Scalars, vectors, and matrices are concepts that may have been 
introduced to the student in a course in linear algebra.  Here, scalar, vector, and 
tensor fields are entities that are defined over some region of 3-D space and 
time.  It is implicit that they are a function of the spatial coordinates and time, i.e., 
ϕ=ϕ(x,y,z,t)=ϕ(x,t).  The spatial coordinates are expressed as Cartesian 
coordinates in this class.  However, vectors and tensors are physical entities that 
are independent of the choice of spatial coordinates even though their 
components depend on the choice of coordinates. 
 Scalar fields have a single number, a scalar, at each point in space.  An 
example is the temperature of a body.  The temperature field is usually 
expressed visually by a contour map showing curves of constant temperature or 
isotherms.  An alternative visual display of a scalar field is a color map with the 
value of the scalar scaled to a gray scale, hue, or saturation.  The values of the 
scalar field are continuous with the exception of definable surfaces of 
discontinuity.  An example is the density of two fluids separated by an interface.  
Media that are chaotic and discontinuous on a microscopic scale may be 
described by an average value in a representative elementary volume that is 
large compared to the microscopic heterogeneity but small compared to 
macroscopic variations.  An example is the porosity of a porous solid. 
 Vector fields have a magnitude and direction associated with each point in 
space.  An example is the velocity field of a fluid in motion.  Vector fields in two 
dimensions can be visually expressed as field lines that are everywhere tangent 
to the vector field and whose separation quantifies the magnitude of the field. 
Streamlines are the field lines of the velocity field.  Alternatively, a vector field in 
two dimensions can be visually expressed by arrows whose directions are 
parallel to the vector and having a width and/or length that scales to the 
magnitude of the vector.  These graphical representations of vector fields are not 
useful in three dimensions.  In general, a vector field in 3-D can be expressed in 
terms of its components projected on to the axis of a coordinate system.  Thus, a 
vector field may have different components when projected on to different 
coordinate systems.  Since a vector is a physical entity, the components in 
different frames of reference transform by prescribed rules.  The position of a 
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point in space relative to an origin is a vector defined by the distance and 
direction.  Special vectors having a magnitude of unity are called unit vectors and 
are used to define a direction such as coordinate directions or the normal 
direction to a surface.  We will denote vectors with bold face letters, e.g., v, x, or 
n. 
 Tensors are physical entities associated with two directions.  For example, 
the stress tensor represents the force per unit area, each of which are directional 
quantities.  Transport coefficients, such as the thermal conductivity, are tensors, 
which transform a potential gradient to a flux, each of which are vectors.  The 
components of a tensor in a particular coordinate system are represented by a 
3×3 matrix.  Since the tensor is a physical entity that is independent of the 
coordinate system, the components must satisfy certain transformation rules 
between coordinate systems.  In particular, a set of three directions called the 
principal directions can be found to transform the components of the tensor to a 
diagonal matrix.  This corresponds to finding the eigenvectors of a matrix and the 
components correspond to the eigenvalues.  Bold face letters will also denote 
tensors.  The stress tensor will be denoted by T or τ, depending on whether 
discussing Aris or BSL, respectively. 
 
Curves, surfaces, and volumes 
 We will be dealing with regions of space, V, having volume that may be 
bound by surfaces, S, having area.  Regions of the surface may be bound by a 
closed curve, C, having length.   

Surfaces are defined by one relationship between the spatial coordinates. 
 
 x3=f(x1,x2),  or  F(x1,x2,x3)=0, or F(x)=0 
 
Alternatively, a pair of surface coordinates, u1, u2 can define a surface. 
 
 xi=xi(u1,u2), i=1,2,3 or x=x(u1,u2) 
 
Each point on the surface that has continuous first derivatives has associated 
with it the normal vector, n, a unit vector that is perpendicular or normal to the 
surface and is outwardly directed if it is a closed surface.  Fluid-fluid interfaces 
need to also be characterized by the mean curvature, H, at each point on the 
surface to describe the normal component of the momentum balance across the 
interface.  The flux of a vector, f, across a differential element of the surface is 
denoted as follows, i.e. the normal component of the flux vector multiplied by the 
differential area. 
 
 f•n da 
 
 Curves are defined by two relationships between the spatial coordinates 
or by the intersection of two surfaces. 
 
 f1(x1,x2,x3)=0 and f2(x1,x2,x3)=0, or f1(x)=0 and f2(x)=0 
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Alternatively, a curve in space can be parameterized by a single parameter, such 
as the distance along the curve, s or time, t. 
 
 x=x(s) 
 
The tangent vector is a unit vector that is tangent to each point on the curve. 
 
 τ=dx(s)/ds 
 
The component of a vector, f, tangent to a differential element of a curve is 
denoted as follows. 
 
 f•τ ds 
 
 If the parameter along the curve is time, the differential of position with 
respect to time is the velocity vector and the differential of velocity is 
acceleration. 
 

 

d
dt
d
dt

=

=

xv

va
 

 
Coordinate systems 
 Scalars, vectors, and tensors are physical entities that are independent of 
the choice of coordinate systems.  However, the components of vectors and 
tensors depend on the choice of coordinate systems.  The algebra and calculus 
of vectors and tensors will be illustrated here with Cartesian coordinate systems 
but these operations are valid with any coordinate system.  The student is 
suggested to read Aris to learn about curvilinear coordinate systems.  Bird, 
Stewart, and Lightfoot express the components of the relevant vector and tensor 
equations in Cartesian, cylindrical polar, and spherical polar coordinate systems. 
 Cartesian coordinates have coordinate axes that have the same direction 
in the entire space and the coordinate values have the units of length.  
Curvilinear coordinates, in general, may have coordinate axis that are in different 
directions at different locations in space and have coordinate values that may not 
have the units of length, e.g., θ in the cylindrical polar system.  If (y1,y2,y3) are 
Cartesian coordinates and (x1,x2,x3) are curvilinear coordinates, a differential 
length is related to the differential of the coordinates by the following relations. 
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where gij are components of the metric tensor which transforms differential of the 
coordinates to differential of length.  Summation is understood for repeated 
indices.  Calculus in a curvilinear coordinate system will require the metric tensor. 
 A differential element of volume in curvilinear coordinate system is related 
to differentials of the coordinates by the square root of the determinate of the 
metric tensor or the Jacobian, J. 
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 Henceforth, Cartesian coordinates with subscript notation will be used. 
 
Units 
 Dimensional quantities will be used in equations without explicit 
specification of units because it is understood that they will have the SI system of 
units.  The SI units and mks units are similar with some exceptions as in 
electricity and magnetism.  The following table lists the SI units of the quantities 
used in this course and the conversion factor needed to convert the quantity from 
some customary units to SI units.  Multiply the quantity in customary units by the 
conversion factor to obtain the quantity in SI units.  The following is taken from, 
The SI Metric System of Units and SPE METRIC STANDARD, Society of 
Petroleum Engineers. 
 
Table 1.2 SI units and conversion factors 
Quantity SI unit Customary unit Conversion 

factor 
Length m ft 3.048 E-01 
Mass kg lbm 4.535 924 E-01 
Time s s 1.0  
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Temperature °K °R 5/9 
Pressure, stress Pa psi 6.894 757 E+03 
Density kg/m3 g/cm3 1.0 E+03 
Force N lbf 4.448 222 E+00 
Flow rate m3/s U.S. gal/min 6.309 020 E-05 
Diffusivity m2/s cm2/s 1.0 E-04 
Thermal conductivity W/(m⋅K) Btu/(hr-ft2-°F/ft) 1.730 735 E+00 
Heat transfer coefficient W/(m2⋅K) Btu/(hr-ft2-°F) 5.678 263 E-06 
Permeability m2 darcy 9.869 233 E-13 
Surface tension N/m dyne/cm 1.0 E-03 
Viscosity (dynamic) Pa⋅s cp 1.0 E-03 
 
Continuum approximation 

The calculus of scalar, vector, and tensor fields require that these 
quantities be piecewise continuous down to infinitesimal dimensions.  However, 
quantities such as density, pressure, and velocity become ambiguous or 
stochastic at the scale of molecular dimensions.  Thus the fields discussed here 
are the average value of the quantity over a representative elementary volume, 
REV, of space that is large compared to molecular dimensions but small 
compared to the macroscopic variation of the quantities.  The size of the REV 
depends on the scale that a problem is being investigated.  For example, 
suppose one is investigating a fixed bed catalyst reactor.  As a first order 
approximation for design purposes, the reactor may be modeled as a one-
dimensional system with the cross-section of the reactor approximated as the 
REV.  However, is one is investigating instabilities and channeling, the bed may 
be modeled in 2-D with the REV being a volume that is small compared to the 
macroscopic dimensions of the reactor but large compared to the size of the 
catalyst particles.  If one is optimizing the transport-limited kinetics of the reactor, 
then the REV may be small compared to the size of the catalyst particle.  If one is 
optimizing the balance between transport-limited and surface reaction rate limited 
kinetics, the REV may be small enough to describe the surface morphology of 
the catalyst particle.  However, the molecular dynamics of the surface reaction is 
beyond the realm of transport phenomena.   
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Densities, potential gradients, and fluxes 
Velocity: and flux by convection.  Transport or flux of the various quantities 

discussed in this course will be due to convection (or advection) or due to the 
gradient of a potential.  Common to all of these transport process is the 
convective transport resulting from the net or average motion of the molecules or 
the velocity field, v.  The convective flux of a quantity is equal to the product of 
the density of that quantity and the velocity.  In this sense, the velocity vector can 
be interpreted as a “volumetric flux” as it has the units of the flow of volume 
across a unit area of surface per unit of time.  Because the flux by convection is 
common to all forms of transport, the integral and differential calculus that follow 
the convective motion of the fluid will be defined.  These will be known as the 
Reynolds’ transport theorem and the convective or material derivative. 

Mass density and mass flux.  If ρ is the mass density, the mass flux is ρ v. 
Species concentration.  Suppose the concentration of species A in a 

mixture is denoted by CA.  The convective flux of species A is CA v.  Fick’s law of 
diffusion gives the diffusive flux of A. 

 
A A AC= − •∇J D  

 
The diffusivity, DA, is in general a tensor but in an isotropic medium, it is usually 
expressed as a scalar. 

Internal energy (heat).  The density of internal energy is the product of 
density and specific internal energy, ρ E.  The convective flux is ρ E v.  For an 
incompressible fluid, the convective flux becomes ρ Cp (T-To) v.  The conductive 
heat flux, q, is given by Fourier’s law for conduction of heat, 

 
T= − •∇q k  

 
where k is the thermal conductivity tensor (note: same symbol as for 
permeability). 

Porous media.  The density of a single fluid phase per unit bulk volume of 
porous media is φ ρ, where φ is the porosity.  Darcy’s law gives the volumetric 
flux, superficial velocity, or Darcy’s velocity as a function of a potential gradient. 

 

( )p ρ
µ

φ

= − • ∇ −

=

ku g

v
 

 
where k is the permeability tensor and v is the interstitial velocity or the average 
velocity of the fluid in the pore space.  Darcy’s law is the momentum balance for 
a fluid in porous media at low Reynolds number. 
 Momentum balance.  Newton’s law of motion for an element of fluid is 
described by Cauchy’s equation of motion. 
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where f is the sum of body forces and T is the stress tensor.  The stress tensor 
can be interpreted as the flux of force acting on the bounding surface of an 
element of fluid.   
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The stress tensor for a Newtonian fluid is as follows. 
 

 
( )

( )
2

1
2

t

p λ µ= − + Θ +

= ∇ + ∇

T I

e v v

e
 

 
where p is the thermodynamic pressure, Θ is the divergence of velocity, µ is the 
coefficient of shear viscosity, (λ+2/3µ) coefficient of bulk viscosity, and e is the 
rate of deformation tensor.  Thus the anisotropic part (not identical in all 
directions) of the stress tensor is proportional to the symmetric part of the velocity 
gradient tensor and the constant of proportionality is the shear viscosity. 
 Electricity and Magnetism.  We will not be solving problems in electricity 
and magnetism but the fundamental equations are presented here to illustrate 
the similarity between the field theory of transport phenomena and the classical 
field theory of electricity and magnetism.  The Maxwell’s equations and the 
constitutive equations are as follows. 
 

 

0

Constitutive equations:

t

t
ρ

∂
∇× = +

∂
∇ • =

∂
∇× = −

∂
∇ • =

=
=
=

DH J

B
BE

D

B µH
D εE
J σE

 

  
where 
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 E electric field intensity 
 D electric flux density or electric induction 
 H magnetic field intensity 
 B magnetic flux density or magnetic induction 
 J electric current density 

ρ charge density 
µ magnetic permeability (tensor if anisotropic) 
ε electric permittivity (tensor if anisotropic) 
σ electric conductivity (tensor if anisotropic) 

 
When the fields are quasi-static, the coupling between the electric and 

magnetic fields simplify and the fields can be represented by potentials. 
 

V= −∇
= ∇×

E
B A

 

 
where V is the electric potential and A is the vector potential.  The electric 
potential is analogous to the flow potential for invicid, irrotational flow and the 
vector potential is analogous to the stream function in two-dimensional, 
incompressible flow. 
 
Reading assignment 
 Read Chapter 1 and Appendix A and B of Aris. 
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