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The characteristic equation for the closed loop in figure 1 can be written as follows: 

C
OL 2

2k (1 3 s)1 G (s) 1
0.2s 0.4s 1

+
+ = +

+ +
 (S1.1) 

Setting (S1.1) equal to zero and substituting kC=2 yields: 

3 20.2s 0.4s 5s 12 0+ + + =  (S1.2) 

Test 1: All the coefficients of (S1.2) are positive. Therefore, one can move to test 2. 
Test 2: (S1.2) is a 3rd order polynomial. Thus, the Routh-Hurwitz array is composed of 4 
rows. 
 
 Column 1 Column 2 
Row 1 0.2 5 
Row 2 0.4 12 
Row 3 [(0.4*5) (12*0.2)] 0.4 1− = −  0 
Row 4 ( 1*12) 1 12− − =  0 
 
As all the coefficients of the first column of the Routh-Hurwitz array are not positive, the 
system is unstable. Moreover, as the sign changes two times (from row 2 to row 3 and 
row 3 to row 4), there are two roots with positive real part. 
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For the proportional controller, the characteristic equation for the closed loop in figure 2 
can be written as follows: 
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Setting (S2.1) equal to zero yields: 

3 2
Cs 3s 3s (1 k ) 0+ + + + =  (S2.2) 

Test 1: All the coefficients of (S2.2) are positive. Therefore, one can move to test 2. 
Test 2: (S2.2) is a 3rd order polynomial. Thus, the Routh-Hurwitz array is comprised of 4 
rows. 
 
 Column 1 Column 2 
Row 1 1 3 
Row 2 3 C1 k+  
Row 3 1 CA [9 (1 k )] / 3= − +  0 
Row 4 C1 k+  0 
 
In order to ensure stability, it is sufficient to impose that A1 is positive. Thus, if Ck 8<  
the system is stable, while the condition Ck 8=  leads the system to the verge of 
instability. 
 
 
For the proportional-derivative controller, the characteristic equation for the closed loop 
in figure 2 can be written as follows: 
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Setting (S2.3) equal to zero yields: 

3 2
Ds 3s (3 10 )s 11 0+ + + τ + =  (S2.4) 

Test 1: All the coefficients of (S2.2) are positive. Therefore, one can move to test 2. 
Test 2: (S2.4) is a 3rd order polynomial. Thus, the Routh-Hurwitz array is comprised of 4 
rows. 
 
 Column 1 Column 2 
Row 1 1 D3 10+ τ  
Row 2 3 11 
Row 3 D( 2 30 ) / 3− + τ  0 
Row 4 11 0 
 
In order to ensure stability, it is sufficient to impose that D2 30− + τ  is positive, which 
yields D 1 15τ > . 
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The characteristic equation for the closed loop in figure 3 can be written as follows: 
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Setting (S3.1) equal to zero yields: 

4 3 2
Cs 4s 6s 4s (1 k ) 0+ + + + + =  (S3.2) 

Test 1: All the coefficients of (S3.2) are positive. Therefore, one can move to test 2. 
Test 2: (S3.2) is a 4th order polynomial. Thus, the Routh-Hurwitz array is comprised of 5 
rows. 
 
 Column 1 Column 2 Column3 
Row 1 1 6 C1 k+  
Row 2 4 4 0 
Row 3 5 C1 k+  0 
Row 4 1 CB [20 4(1 k )] 5= − +  0 0 
Row 5 C1 k+  0 0 
 
In order to ensure stability, it is sufficient to impose that B1 is positive. Thus, if Ck 4<  
the system is stable. 
 
In order to get two imaginary roots, the elements of the 3rd and 5th row have to be positive 
while that of the 4th row is zero. This is accomplished when Ck 4= , which gives the 
following polynomial: 

2
1 2a s a 0+ =  (S3.3) 

where a1 = 5 (3rd row element) and a2 = C1 k+ = 5 (5th row element). Therefore, (S3.3) 
becomes: 

25s 5 5(s j)(s j) 0+ = − + =  (S3.4) 

which gives s1 = j and s2 = -j. 

controller valve tank 1 

Measuring 
device 

SPy (s) y(s)
Ck 1 3

1
(s 1)+

1
s 1+


