Problem 1

Ysp(s) 5 Y(s)

® k=16 (s+1)(2s+1)
The closed loop transfer function can be written as follows:

__ 8

y(s s+1)(2s+1 8 8/9
GCL(S)=_Y() - )(8 ) _ 5 =—— / (S1.1)

Yop(8) 1.8 25+3s+9 2/9s"+1/3s+1

(s+1)(2s+1)

Thus, comparing (S1.1) to the standard form of 2™ order systems, one obtains:

?=2/9 = 1=+2/3=0471

261=1/2 = £=+2/4=0354

k =8/9=0.889

Since & is smaller than 1, the system is underdamped.

a) From textbook, we know that:

0S = exp[ —& J: 0.305 — Max dev final value _ y,, —y()

[1-¢€> final value y(0)

The output of the system for a step change of magnitude 0.1 in the set point is:

0l 89
Y s 2/9s* +1/3s+1

Applying the final value theorem, yields:

. ) 0.8/9 0.8
o) =limsy(s) = lim =—=0.0889
Yo = sy ) = o /3541 9

Hence, the maximum value of the response is:

Vo = Y(0)(1+08)=0.116

(S1.2)

(S1.3)

(S1.4)

(SL.5)

(S1.6)

(S1.7)

(S1.8)



b) For a servo problem, the offset is given by:

offset = new set point — y(0) =0.1-0.0899 =0.0111 (S1.9)

c¢) From the textbook, the period of the oscillation is:

T=2n/0 where o=:1-8/ (S1.10)
Therefore, the value of the period of the oscillation T is:

T=3.17min (S1.11)

Problem 2 h (ft)

The resistance of a liquid to a hydrostatic pressure can R
be defined as the rate of changing of the liquid level due
to the change of the output low rate. Thus:

g
== (S2.1) (ft*/min)

Assuming linear resistances, R; and R, can be directly evaluated by plotting h (ft) versus
q (f'/min) and estimating the slope of the straight line. Hence, one obtains:

R,=R,=0.5 (S2.2)
Since the cross sections are equal to 2, the time constant of the two tanks are both equal
to 1, =A,R, =1 (min) and 1, =A,R, =1 (min), while the static gains of two tanks are
equal to k, =R, =0.5 (min/ft’) and k,=R,/R, =1 (min/ft’). Thus, the transfer
functions of the two tanks are the following:

G6)="2 = G,(s)=—— (52.3)
s+1 s+1

Employing a proportional controller, the corresponding transfer function is:

G,(s) =k, (S2.4)

Plotting the change in pressure to the valve versus the change in flow provides the
transfer function for the final control element:

P _01 (S2.5)

G.(s) = —
¢(8) dq 1

With no lag in the measuring device dynamics, the corresponding transfer function is:



G, (s)=1 (52.6)

Therefore, the block diagram is the following:

a)
controller valve tank 1 tank 2
Vep(s) qa(s) 0.5 1 3(s)
k, 0.1 ﬁ a
Measuring
device

1

b) The close loop transfer function is:

0.05 k_ 0.05 k,
V(s s+1)° 1+0.05 k
G (s) = _Y( ) _ (0 05) = 1 5 (S2.7)
Ysp (8) 1+ c 2 +1

S™+ S
(s+1)’  1+0.05k,  1+0.05k,

Comparing the closed loop transfer function to the standard form of a 2™ order system
transfer function one obtains:

1=1//1+0.05k, (S2.8)
£=1/1+0.05 k, (S2.9)

k=0.05k,_/(1+0.05k,) (S2.10)

For a critically damped 2™ order system, £&=1 and therefore:

Koy =0 (S2.11)

Therefore, the critical damping cannot occur.

c¢) For interacting tanks, the transfer function between the output of the second tank and
the input of the first tank is given by:

6o = ) _ R, 0.5

— S2.12
qs) TS +(t+1, +AR)s+1 sP+3s+1 ( )

Thus, the close loop transfer function becomes:



0.05 k_ 0.05 k,
Vi 2

Va(9) 1, 005K, r ., 3
s’+3s+1 1+0.05k,  1+0.05k,

+1

Comparing the closed loop transfer function to the standard form of a 2™ order system
transfer function one obtains:

t=1//1+0.05 k, (S2.14)

3
S B S2.15
: 2/1+0.05k, (5219
k=0.05k_/(1+0.05k,) (S2.16)

For a critically damped 2" order system, £&=1 and therefore:

K, cp) = 25 psi/ft (S2.17)

Hence, for interacting capacities the critical damping does occur.

d) Assuming k.=1.5kp), one obtains:

k, = 1.5k, ¢, = 37.5 psi/ft (S2.18)

Thus, the natural period of the oscillations, damping factor and gain becomes:

1=0.590 (min) (S2.19)
£=0.885 (S2.20)
k =0.652 (ft) (S2.21)

For a step change of 1/12 ft in the se point, ys(s) 1s equal to 1/(s12). Therefore, one
obtains:

0.652 0.054
y(s)= Vep(8) = S2.22
ye) 0.348s% +1.043s +1 Ysr(S) (0.348s +1.043s +1)s ( )
Since § is smaller than 1, from textbook we have:
| R t L A1=8
) =0.05441 ———e " sin| |J1-E> — + tg =
¥ { e [ St [ £ m (S2.23)

=0.054-0.116e """ sin(0.8t + 28°)



Problem 3:

a) The block diagram is the following:

mA mA mA psgi\ m’/min Kg/m’ Kg/m’
® Controller Transducer Valve Process Line
3
/I\ mA Delay mA Composition Kg/m
Transmitter Data

b) Controller (pure PID)

Transfer function is: G, (s) = K (1 + L +7,5)
7,S
Transducer
Transfer Function is: G; (S) = pNV ) _ P (5)-3 = 15-3 = 12 = 3
p(s) p(s)—-4 20-4 16 4

Control Valve
Linearizing qa around an operative point:

s = Qn +0.0310(20)20" "2 (p, — p,)
Choosing qao=0.17 and pvo=3, gives: q, =q,, +0.0025In(20)(p, —p,,)

Transfer Function is: G (s) = (}A () _9,()=0.17 _ 0.00251n(20)
p,(8)  p.(s)-3

Also, considering delay: G (s) =0.0025In(20)e™
Process

dc
VE:qACA+qFCF —(g,+0g)Cc.Note 0, +qr = (.
dc
Hence VE+ch:chA+qFCF.

At steady state: q.c, =q,.C, +Cp,
Defining € =c—cC,, §, =0, — 0, Cp =Cp —Cg, yields:

V%+qF6:chA+qF6F or tp%+6:kpc~1A+kd6F where 1, =V/q;,

K, =c,/qz and K, =1.

Taking Laplace transform gives:

: . 221 (8) = Gy (5),(5) + G (5)c )

c(8)=———q,(5)+
Tps+1 TS+



Therefore, process can be expanded as Kg/m’
illustrated in figure. \l/

Gp(s)

Trasmission Line m>/min \l/ Kg/m’

—=| Gp(s) [

Transfer function is: G, (s)=¢e ",
where t, =|20m(0.5)" |/ 4q,

Composition Transmitter Data
C,(s) c,(s)-4 20-4 16
c(s) c(s) 200 200

Transfer Function is: G, (S) =



