Problem 1

a) For noninteracting capacities with linear resistances subject to a unit-step change in the
input of the first tank, the material balance can be written as follows:

d

AlRl—;l +y, =R,u(t) (S1.1)
d R

Asz—;/tz +Y, =R—iy1 (S1.2)

subject to the initial conditions
¥,(0) =y, =Ryu, Y,(0) =Y, = Rz/Rl Yis = R (S1.3)

Defining the deviation variables Y1=y1-Yy1s, Y2=Y2-Y2s and Q=u(t)-us, equations (S1.1)-
(S1.2) become:

A1R1%+Y1 “R,Q (S1.4)
AR e,y _Rey (SL5)
2" %2 dt 2 Rl 1

subject to the initial conditions
Y,(0)=0 Y,(0)=0 (S1.6)

Hence, the transfer functions for equations (S1.4)-(S1.5) are:

“Y(s) R,
&8 =36) ~ AR5 1 (51.7)
G,(s)= V.0 __RoR, (S1.8)

?1(3) (AR,)s+1

Since the two noninteracting tanks are placed in series, the overall transfer function is the
following:

_ _Y,(9) _ R,
G(s) = G,(s)G,(s) = 26) (AR HI[ (AR +1] (S1.9)
Rewriting (S1.9) in the standard form, gives:
G(s) = G,(5)G, (5) = Yo(8) R, (S1.10)

Q) [(ARAR,)S +2AR, +AR,) +1]



For critically damped systems, &=1. Therefore, comparing equation (S1.10) with the
standard form yields:

v =171,=(AR,)AR,) (S1.11)
1=1,+17,=AR, +AR, (S1.12)
Equations (S1.12)-(S1.11) are simultaneously solved if:

=1, = AR, =AR, (S1.13)

In other words, the system is critically damped if the roots of the denominator in (S1.9)
are in reality one root with multiplicity equal to 2. This immediately implies (S1.13).
Thus:

R.AL (S1.14)
A 2

b) From the textbook, solution to the critically damped second order system subject to a
unit-step change is:

YFZQ_(t)=1_ei (1+1j (SL.15)

2 T

Since it takes 1 min for the change in level of the second tank to reach 50 percent of the
total change, one obtains:

1
05=1-¢ f[1+lj — 1t=0.59min (S1.16)
T

c) From the textbook, solution to a first order system (1% tank) subject to a unit-step
change is:

=l-g- (S1.17)

Therefore, in order for the level of the first tank to reach 90 percent of the total change it
takes:

t

09=1-e 9% = t=0.59In(10)min =1.36min (S1.18)

Problem 2



Bringining the transfer function in standard form, yields:

20

G()=———
©) 4s? +0.65+1

(S2.1)

Therefore the natural period of oscillation and the damping factor are the following:

=4 = 1=2(time)
21 =0.6 (time) = &=0.6/(2t)=0.15 (D-less)

Hence, from the page 191 of textbook one obtains:

OS =exp [_—n&] =0.62 (D-less)
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Problem 3

Let 1/R=1/Ra+1/R1=3/2. Then, the material balance
on the first tank yields:

dh, h,
_— — + — —_—
at q—(d, +a,) =1 R,
subject to the initial condition h;(0)=his=qsR:.
Equation (3.1) can be rewritten as follows:

dh
AlRt d_t1+ h1 = th

A (s3.1)

(S3.2)

The material balance on the second tank yields:
AR h _Rep
dt R,

(S2.2)

(S2.3)

(S2.4)

(S2.5)
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(S3.3)

subject to the initial condition h,(0)=R»/R;h;s. Defining the deviation variables Hi=h;-hss,

H,=h,-h,s and Q=g-qs, equations (S3.2)-(S3.3) become:

dH

AR —H+H =RQ
AR, Iz py _Rayy
dt R,

subject to the initial conditions

(S3.4)

(S3.5)



H,(0)=0 H,(0)=0

Hence, the transfer functions for equations (S3.4)-(S3.5) are:

Gl(S) — F_ll(s) — Rt — 2/3
QGk) (AR,)s+1 4/3s+1

GZ(S) — I32(8) — Rz/Rl — 1
H,(s) (A,R,)s+1 s+1

Thus, the overall transfer function is the following:

H,(s) 2/3

G()=6.()G. () = Q)  (4/3s+1)(s+1)

Problem 4

a) Linearizing caCr about CcasCrs Yields:

3CaC)| (¢, )4 3CaCe)

A Ca=Cxs CR Ca=Chs
Cr=Crs Cr=Crs

CACR = CAsCRs +

= CAsCRs + CRs (CA - CAs) + CAs (CR - CRs)
Substituting (S4.1) into (4.1a) and (4.2b) gives:
T dgtA = CAi - CA - kCAsCRs - kCRs (CA - CAs) - kCAs (CR - CRS)
(o
dt
At steady state, one obtains:
CAis - CAS = kCAsCRs

_CRis + CRs = kCAsCRs

= CRi - CR + kCAsCRs + kCRs (CA - CAS) + kCAs (CR - CRs)

(Cr —Cg)+HOT =

(S3.6)

(S3.7)

(S3.8)

(S3.9)

(S4.1)

(S4.2)

(S4.3)

(S4.4)
(S4.5)

Defining the deviation variables A=Ca-Cas, R=Cgr-Crs, Qa=Cai-Cais and Qr=Crgi-Ckis

equations (S4.2)-(S4.3) become:

rcij—? =Q, —~A-kC,A—KC,R

rZ—TzQR -R+KkC, ,A+kC,R

Subject to:

(S4.6)

(S4.7)



A(0)=0 R(0)=0 (S4.8)

b) Taking the Laplace transform of both sides of (S4.6)-(S4.7) and applying the initial
conditions (S4.8) yields:

1SA(S) = Q4 (5) — A(S) —KC o A(5) —KC, R(5) (54.9)
SR(S) = Qg (s) — R(S) + KCL A(s) + KC . R(S) (S4.10)

Notice that in equation (S4.9) Qr(s)=0 since Cg; is constant. Thus, solving (S54.10) for A
gives:

1s+1-kC

A(s) = 2 R(s) (S4.11)

Rs

which substituted into (S4.9) provides the transfer function between R(s) and Qa(s):

R(s) kC
G(s)== = Rs (S4.12)
QA(S) SZ+2|:1_+_ k(CRs_CAs)}S+|:1+k(CRZ_CAS):|
T 2 T
c) Notice that the denominator of G(s) can be written as:
as’ +bs+c (S4.13)

where a=1. The condition (Cas-Crs)<l/k ensures that the 1% order and 0" order
coefficient of the polynomial denominator of G(s) are positive. Hence, since s;5,=c>0,
then the two roots have the same sign (either positive or negative). Moreover, as —
(s1+s2)=b, then the two roots are both negative. Therefore, the condition (Cas-Crs)<1/k
guarantees stability for the system.

d) From (S4.12) one obtains:

k(CRs — CAs)

=1+
: 2

(S4.14)

Since the term Crs-Cas is positive, so is the term k(Crs-Cas)/2. Therefore, the damping
factor & is bigger than 1 and the system in overdamped.



