Problem 1

From table 7.1 in the textbook, the Laplace transform of y(t)=te™ is:

L[t ]=Y(s)= T 1) (S1.1)

Moreover, the Laplace transform of the unit-impulse (t) is:
L[8(t)]=T(s) =1 (S1.2)

Since u(t)=0 all the time but at t=t,, assuming that y(t) is in deviation form (i.e. ys=0), the
transfer function of the system in exam can be written as follows:

ye_ 1
G(s) = 10~ Gr T (S1.3)

Problem 2

Assuming constant density and reactor volume, the overall material balance can be
written as follows:

d:l(t) F (t)—F = F (t)-8h(t)*? (S2.1)

As initial condition for equation (S2.1), we chose the steady state value of the hydrostatic
pressure hs given by:

h(0)=h, =F;/64 (S2.2)

Linearizing the right hand side of equation (S2.1) about the steady state value (52.2), one
obtains:
F(t)-8h(t)** =[F (t)-F.]-[ 4h;** ][h(t) - h,] (S2.3)

Defining the deviation variables H(t)=h(t)-hs and Q(t)=Fi(t)-Fs, and considering (S2.3),
equation (S2.2) becomes

Ah¥? dH(t hY?
() +H(t) =—— Q(t) (S2.4)
T4 dt
subject to the followmg initial condition
H(0)=0 (S2.5)

Therefore, by comparison to the standard form of 1% order systems, the time constant
T and the gain k are the following:



12 12
LA R (S2.6)
4 4
Hence:
a) h =3t = 1=3/3/4 (s2.7)
b) h,=9ft = 1=9/4
Problem 3
The material balance on the component A is the following:
v _pre ) e, ()] -ke, OV (S3.1)

dt

subject to the initial condition ca(0)=cass=F/(F+kV)caiss. As the differential equation
describing the dynamics of the system is linear, it is already in deviation form when one
chooses the deviation variables x(t)=ca(t)-Cass and y(t)=cai(t)-Caiss. Thus, (S3.1) can be
rewritten as follows:

Voodx() _F
v a0 E YO (532

subject to the initial condition x(0)=0. Therefore, by comparison to the standard form of
1% order systems, the time constant T and the gain k of the system are given by:

T= v k= F (S3.3)
F+kV F+kV
and the transfer function G(s) can be expressed as follows:
_F
G(S) _ f(s) — F+kV — k/T (834)
¥(s) V. 4q stlr
F+kV
Unit-step change y(s) =1/s. Therefore
() = KT |1 1 (S3.5)
[s+Y/t]s s s+1/t '
which yields:
x(t) =k(@-e") (S3.6)

Thus, the sketch to a unit-step change is shown in figure S3.a



Unit-impulse change y(s) =1. Therefore

_ kit
s+t

X(s)
which yields:

x(t) _ K
T

Thus, the sketch to a unit-impulse change is shown in figure S3.b

Sinusoidal input Y(s) = Aw/(s* + ®?) . Therefore

k/t Ao
s+t + o

X(s) =

Repeating what we did in class (see also page 318 of the textbook), one gets:

sinfot+¢) ¢ =tan"(~ot)

X(t) —k—A
__Vrﬂnz+1

Thus, the sketch to a sinusoidal input is shown in figure S3.c
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Figure S3

Problem 4

Assuming constant density and reactor volume, the overall material balance can be

written as follows:

AR¥+ h(t) = RF.(t)

(S4.1)

As initial condition for equation (S4.1), we chose the steady state value of the hydrostatic

pressure hs given by:



h(0)=h, =RF, (54.2)

Since (S4.1) is linear, defining the deviation variables H(t)=h(t)-hs and Q(t)=Fi(t)-Fis
(S4.1) can be immediately rewritten in deviation form as follows:

AR%JF H(t) = RQ(t) = Rasin(wt) (S4.3)
subject to the initial condition

H(0)=0 (S4.4)

The first order system given by (S4.3)-(S4.4) has time constant and gain respectively
given by:

t=AR k=aR (S4.5)

We know from what we did in class that the output of a first order system subject to a
sinusoidal input is a sinusoidal wave with the same frequency and with an amplitude ratio
given by:

k aR

ARatio=b = =
Vo +1 VAR @? +1

(S4.6)

Solving (S4.6) for A gives:

1 2 2
A=——@R)’ -b S4.7
2ap VER) (S4.7)



