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Chapter 1

Thermodynamics

1.1 Equations of State

An equation of state (EOS) is a mathematical model that describes the PVT behavior of a compound.
This section explores several models that described the vapor, liquid and supercritical phases and the
associated Matlab programs. These models can be utilized for several purposes like calculating PVT,
the compressibility, the fugacity coefficient, or residual properties.

The Gibbs phase rule states
oF =2− π +N (1.1)

where oF is degrees of freedom, π is the number of phases, and N is the number of species. This implies
that by setting two extensive variables for a single phase, other extensive variables may be calculated
by the EOS. Since only pressure, temperature, and volume may be directly measured in a laboratory
setting, the EOS is expressed in terms of these extensive variables. However, additional extensive
variables may be calculated by slightly modifying the EOS. In particular, the extensive variables of
compressibility, fugacity coefficient and residual properties are incredibly important in common chem-
ical engineering problems.

The compressibility is defined as

Z =
V

V
ig

=
V P

RT
(1.2)

The fugacity coefficient is

ln (φ) =
∫ P

0

(Z − 1)
dP

P
(1.3)

A residual is defined as the difference between a property in the real state versus the ideal gas state.

MR = M −M ig (1.4)

Since, enthalpy, Gibbs free energy, and entropy are state variables the relationship between these
variables and pressure can be expressed in the residual properties. Thus the residuals are (without
showing the derivation): Enthalpy

HR

RT
= −T

∫ P

0

(Z − 1)
dP

P
(@const.T ) (1.5)
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Gibbs Free Energy
GR

RT
=

∫ P

0

(Z − 1)
dP

P
(@const.T ) (1.6)

Entropy
SR

R
= −T

∫ P

0

(
∂Z

∂T

)
P

dP

P
−

∫ P

0

(Z − 1)P

dP

P
(@const.T ) (1.7)

1.1.1 Ideal Gas Law

The ideal gas law is
PV =RT (1.8)

The program IdealGas.m, like all the following EoS programmed into Matlab calculate PVT, Z, & the
Fugacity Coefficient. As a heuristic rule, never use the Ideal Gas law above 10 bars.

1.1.2 Cubic EOS

Several forms of a cubic EOS have been proposed. The first was proposed by van der Waal (1890).
All cubic EOS have the general form

P =
RT

V − b
− a

(V + εb) (V + σb)
(1.9)

For the various models, different values of b, ε, and σ are used for each EoS. The parameter a is
described as a function of temperature and accentric factor to obtain the proper curvature for the EoS.
As a general heuristic rule van der Waals is the least accurate cubic EoS which Soave-Redlich-Kwong
and Peng-Robinson are amoung the better ones available. They were designed to be accurate below
the critical properties and should not be extended very far above Tr = 2 or at high pressures.
Four models are currently available in Matlab: van der Waals (VanDerWaals.m), Redlich-Kwong
(RedlichKwong.m), Soave-Redlich-Kwong (SRK.m), & Peng-Robinson (PengRobinson.m).

1.1.3 Virial Equation

Volume Expansion

Z=1 +
B

V
+

C

V 2
+ · · · (1.10)

Pressure Expansion

Z=1 +
BP

RT
+

(
C −B2

) (
P

RT

)2

+ · · · (1.11)

For normal, simple compounds (i.e. alkanes, diatomics, etc.) Lee-Kelser approximation of B can be
utilized in Pitzer2ndVirial.m. This is accurate to Tr < 1.5 and moderate pressure ranges.
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1.2 Saturation Properties

1.2.1 Molar Volume - Saturated Liquid

Numerous techniques are available to estimate the molar volume of a saturated liquid. The following
algorithms were programmed into Vsat.m

Rackett (1970)

Vsat = VcZ
(1−Tr)

2
7

c (1.12)

Modified Rackett (1970)

Vsat =
RTc

Pc
Z1+(1−Tr)

2
7

c (1.13)

Yamada & Gunn (1973)

Vsat = Vc(0.29056− 0.08775w)(1−Tr)
2
7 (1.14)

Modified Yamada & Gunn (1973)

Vsat =
RTc

Pc
(0.29056− 0.08775w)1+(1−Tr)

2
7 (1.15)

Daubert (1997)

Vsat =
B1+(1− T

C )D
)

A
(1.16)

Hankinson & Thomson (1979)
Vsat = V0 ∗ V1 ∗ (1− wsrk ∗ V2) (1.17)

wsrk ≈ w

V0 ≈ Vc

V1 = 1 + a(1− Tr)
1
3 + b(1− Tr)

2
3 + c(1− Tr) + d(1− Tr)

4
3

V2 =
e+ fTr + gT 2

r + hT 3
r

Tr − 1.00001

a -1.52816 e -0.296123
b 1.43907 f 0.386914
c -0.81446 g -0.0427258
d 0.190454 h -0.0480645

SPECIAL CASE ... NORMAL BOILING POINT (i.e. P = Patm & T = Tb)
Tyn & Calus (1975)

Vsat = 0.285V 1.048
c (1.18)
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NOTES ::

• Daubert gives closest approximation if constants are available.

• Modified Yamada & Gunn (1973) does not predict Vc accurately which implies large errors in values.

Compound T.C. Daubert Rackett Mod. Rackett Y.G. Mod. Y.G. H.T.
Methane 35.03 37.90 37.23 37.21 37.58 38.03 37.53

n-Heptane 163.15 163.00 163.37 163.31 162.85 162.08 163.19
Ethylene 47.18 49.20 49.32 49.26 49.58 49.86 49.53
Benzene 96.38 95.80 96.81 96.67 97.11 97.38 97.17
Methanol 42.28 42.70 39.28 39.25 41.46 44.58 41.72
Acetone 76.98 77.60 70.92 71.06 77.72 88.12 77.86

Acetic Acid 65.71 66.00 57.32 57.26 64.85 76.62 65.13
Chlorine 44.54 45.40 43.77 42.09 46.28 47.77 46.23
Ammonia 25.38 25.00 24.15 24.11 26.17 28.97 26.20

Water 19.33 18.80 17.65 17.64 19.51 22.16 19.56

Table 1.1: Molar volume of saturated liquids at normal boiling temperatures calulated by Vsat.m

1.2.2 Saturated Vapor Pressure

Numerous techniques are available to estimate the saturated vapor pressure as a function of tempera-
ture. The following algorithms were programmed into Psat.m

Clausius-Claperyon

ln (Psat) = A− B

T
(1.19)

Modified Clausius-Claperyon

ln (Psatr ) = h

(
1− 1

Tr

)
(1.20)

h =
Tbr ∗ ln

(
Pc

Patm

)
(1− Tbr )

Antoine (1888)

ln (Psat) = A− B

T + C
(1.21)

Wagner (1973) i.e. Wagner 3-6

ln (Psat) =
Aτ +Bτ1.5 + Cτ3 +Dτ6

Tr
(1.22)

τ = 1− Tr
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Wagner (1977) i.e. Wagner 2-5

ln (Psat) =
Aτ +Bτ1.5 + Cτ2.5 +Dτ5

Tr
(1.23)

τ = 1− Tr

Riedel (1954)

ln (Psat) = A+
B

T
+ Cln (T ) +DT 6 (1.24)

A = −35Q

B = −36Q

C = 42Q+ α

D = −Q

Q = K (3.758− α)

K = 0.0838

α =
3.758Kψ + ln

(
Pc

Patm

)
Kψ − ln (Tbr )

ψ = −35 +
36
Tbr

+ 42ln (Tbr )− T 6
br

Modified Riedel - DIPPR
ln (Psat) = A+

B

T
+ Cln (T ) +D ∗ TE (1.25)

Modified Riedel - API
ln (Psat) = A+

B

T
+ Cln (T ) +D ∗ T 2 +

E

T 2
(1.26)

Lee-Kelser
ln (Psatr ) = ln (Psatr )0 + wln (Psatr )1 (1.27)

ln (Psatr
)0 = 5.92714− 6.09648

Tr
− 1.28862ln (Tr) + 0.169347T 6

r

ln (Psatr )1 = 15.2518− 15.6875
Tr

− 13.4721ln (Tr) + 0.43577T 6
r

Ambrose-Walton (1989)
ln (Psatr

) = f0 + wf1 + w2f2 (1.28)

f0 =
−5.97616τ + 1.29874τ1.5 − 0.60394τ2.5 − 1.06841τ5

Tr

f1 =
−5.03365τ + 1.11505τ1.5 − 5.41217τ2.5 − 7.46628τ5

Tr
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f2 =
−0.64771τ + 2.41539τ1.5 − 4.26979τ2.5 − 3.25259τ5

Tr

τ = 1− Tr

NOTES ::

• Ambrose-Walton (1989) & Lee-Kelser are applicable to normal, simple compounds (i.e. alkanes,
diatomics, etc.). Recommend use of Ambrose-Walton over Lee-Kelser.

• Riedel (1954) not valid for alcohols or acids without modification.

• Two versions of modified Riedel equations exist: one describing the DIPPR database & one de-
scribing the API database.

• Modified Riedel - DIPPR data in Perry’s Chemical Engineering Handbook

• Antoine (1888) data in Lange’s Handbook of Chemistry.
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Chapter 2

Transport Phenomena

UNDER CONSTRUCTION !!!
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