Example 23.1-2: Binary Splitters

>

                                      _____________________

     Feed (F, z, Z)     |                              |    Product (P, y, Y)

        -------------->  |                              |  ------------------>

                              |                              |

                              |________________|

                                             |

                                             |

                                             V

                                    Waste (W, x, X)

 

 

Streams Rate mol frac A   Compounds

1 Feed    F      z         1  A (desired)

2 Product P      y         2  B

3 Waste   W      x  

 

> restart;

 

Ø      eq23_1_13:= z*F = y*P + x*W; macroscopic mass balance for component A (eq. 23.1-13)

 

Ø      W:= F - P; rearrangement of equation 23.1-14 (also mass balance)

 

> P:= theta*F; theta is the ratio of the molar rates of the product and the feed streams and is known as cut

After substituting these two equations into equation 23.1-13. we obtain

 

Ø    z:= simplify(solve(eq23_1_13, z));

 

Ø      zbook:= theta*y + (1-theta)*x; eq. 23.1-15

 

Ø      simplify(z-zbook); our equation agrees with that of the book

 

Ø      eq23_1_16:= Y = alpha*X; where alpha is the separation factor (characterizes the separation capability of the splitter)

 

Ø      Y:= y/(1-y); X:= x/(1-x); equations 23.1-17,18

 

After combining equations 23.1-16,17,18, we can obtain an expression for y

 

Ø    y:= simplify(solve(eq23_1_16,y));

 

Ø    ybook:= alpha*x/(1+(alpha-1)*x);

 

Ø      simplify(y - ybook); we see that our y matches that in the book (eq. 23.1-19)

 

the same is true for x.

 

Ø    y:= 'y';

 

Ø    x:= simplify(solve(eq23_1_16,x));

 

Ø    xbook:= y/(alpha - (alpha-1)*y); 

 

Ø      simplify(x - xbook); we see that our x matches that in the book (eq. 23.1-20)