> restart;
> vz:=s->v0*s/R; Declare velocity profile as a function of s
> eq10:=vz(s)*diff(T(s,z),z)=alpha*diff(diff(T(s,z),s),s); Energy equation: 11.2-10
We convert this formula by substituting qs for T, where .
This is done by dividing both sides by s, then differentiating both sides
with respect to s.
> eq10:=eq10/s:
> de:=diff(eq10,s);
> de:=subs(diff(T(s,z),s)=qs(s,z)/k,de):
> de:=simplify(de*k); This is Eq. 11.2-11
We will convert to dimensionless variables:
,
,
> with(PDEtools,dchange); transf:={qs(s,z)=psi*q1,s=eta*R,z=lambda*v0*R^2/alpha}:
> Newde:=dchange(transf,de,[psi(eta,lambda),(eta,lambda)]):
> eq13:=simplify(%*R^3/(alpha*q1)); Eqn. 11.2-13
> eqbook:=simplify(diff(psi(eta,lambda),lambda)=diff(1/eta*(diff(psi(eta,lambda),eta)),eta)): simplify(eq13-eqbook);
We will now use the method of combination of variables to replace
with
where
It can easily be verified that this still fits the boundary conditions
of the problem.
The following steps convert the LHS of Eq 11.2-13 using the relation
> equiv:=diff(psi(chi),chi)=diff(psi(eta,lambda),lambda)*diff(lambda(chi),chi);
> eq17:=chi=eta/(9*lambda)^(1/3);
> solve(eq17,lambda);
> lambda:=chi->eta^3/9/chi^3:
> LHS:=diff(psi(chi),chi)/diff(lambda(chi),chi);
Now we convert the RHS using the relation .
> equiv2:=diff(1/eta*diff(psi(eta,lambda),eta),eta)=diff(chi(eta),eta)*diff(1/eta*diff(psi(chi),chi)*diff(chi(eta),eta),chi);
> solve(eq17,eta);
> chi:=eta->eta/(9*lambda)^(1/3):
> eta:=chi->chi*(lambda*9)^(1/3):
> RHS:=diff(chi(eta),eta)*diff(1/eta(chi)*diff(psi(chi),chi)*diff(chi(eta),eta),chi);
By simplifying and multiplying both sides by common factors, we obtain:
> ode:=simplify(eq18*(-9)*chi^2*lambda);
Eqn.
11.2-18
Unfortunately, Maple does not know the solution to this problem
> sol:=dsolve({ode,psi(0)=1, psi(infinity)=0},psi(chi));
Error, (in dsolve/sysODE) dsolve/sysODE expects its 2nd argument, funcs, to be of type {set({name, Function}), list({name, Function})}, but received psi(chi)
This has to be solved another way. We converted the second
order equation to a system of first order equations by substituting .
> ode1:=3*chi^3*pi(chi)-pi(chi)+chi*diff(pi(chi),chi);
> solve(eq,pi);
> LHS:=int(-1/pi,pi);
> RHS:=int((3*chi^3-1)/chi,chi);
> simplify(psi,assume=positive);
First apply B.C. b)
> eqa:=0=psi(infinity);
Error, (in psi) division by zero
We try to solve for c1, but Maple returns no output.
At this point we check the BS&L solution Eq 11.2-19 to show that
it satisfies the differential equation 11.2-18
> psi:=chi->Int(chi1*exp(-chi1^3),chi1=chi...infinity)/Int(chi1*exp(-chi1^3),chi1=0...infinity);
> d1psi:=diff(psi(chi),chi);
> d2psi:=diff(diff(psi(chi),chi),chi);
> chi*d2psi+(3*chi^3-1)*d1psi;
We start by integrating Fourier's Law to obtain the temperature profile:
we convert to dimensionless quantities using the following substitutions
for change of variables:
, so:
and
We know from the previous conversion to dimensionless form that .
With a little algebra we obtain Eq 11.2-21, which is:
Substitution of the BS&L solution for y(c) gives:
Where is the "complete
gamma function" and
is
the "incomplete gamma function"
The solution for y(c) is analagous to 1
- erf, but the coefficient on p is (3c
- 1) rather than 2c. Because it
takes this form, it is not at all surprising that Maple is unable to solve
our ODE when it easily solves differential equations whose solutions involve
the common error function.