Forced Convection Heat Transfer for Non-Newtonian Flow in Tubes - Short Contact Times
> restart;
Ellis model for non-Newtonian fluid; assume that shear stress in flow near pipe wall is a constant tau
> eq1:=-D(vz)(r)=(phi0+phi1*tau^(alpha-1))*tau;
Solve for velocity profile in terms of this constant wall shear stress
> s1:=dsolve({eq1,vz(R)=0},vz(r)): assign(s1); vz:=unapply(vz(r),r);
Circumference of a circle, used in area calculations
> C:=r->2*Pi*r;
Energy by conduction at r
> Qr:=(r,z)->C(r)*qr(r,z)*dz;
Energy by conduction at z
> Qz:=(r,z)->C(r)*qz(r,z)*dr;
Energy with flowing fluid at z
> Qconv:=(r,z)->rho*Cp*vz(r)*(T(r,z)-T0)*C(r)*dr;
Set up energy balance of annular ring
> de1:=Qr(r,z)-Qr(r+dr,z)+Qz(r,z)-Qz(r,z+dz)+Qconv(r,z)-Qconv(r,z+dz);
> de1:=simplify(de1/(C(r)*dz*dr)):
Take the limit as dr->0 to obtain differential with respect to r
> de1:=limit(de1,dr=0);
Take the limit as dz->0 to obtain differential with respect to z
> de2:=limit(de1,dz=0);
Use Fourier's law of heat conduction to describe flux in r-direction; Neglect heat conduction in z-direction since it is significantly less than the convection in the z-direction
> qr:=(r,z)->-k*D[1](T)(r,z); qz:=0;
Neglect first derivative with respect to radius because term not important in vicinity of the wall
> de2:=simplify(de2+qr(r,z)/r);
Introduce dimensionless parameter N
> rho:=N*k/Cp/R^2/(phi0*tau+phi1*tau^alpha);
> with(PDEtools,dchange):
Introduce dimensionless variables theta, zeta, and sigma
> trans:={r=R-sigma*R, T=Theta*(T1-T0)+T0, z=R*zeta}:
Rewrite differential equation in terms of dimensionless variables
> de3:=dchange(trans,de2,[Theta(sigma,zeta),sigma,zeta]);
Differential equation in terms of dimensionless variables
> de3:=simplify(de3/k/(T0-T1)*R^2);
Assume a solution of the form theta=f(eta), where eta=(N*sigma^3/9/zeta)^(1/3)
> Theta:=(sigma,zeta)->f((N*sigma^3/9/zeta)^(1/3));
Transform PDE into ODE in eta
> de4:=simplify(subs(zeta=N*sigma^3/9/eta^3,de3),assume=positive):
Ordinary differential equation in terms of new dimensionless variables
> de4:=-de4*sigma^2/eta^2;
Solve ODE with appropriate boundary conditions
> s2:=dsolve({de4,f(0)=1,f(infinity)=0},f(eta)): assign(s2); f:=unapply(f(eta),eta);
This is a different form from what BSL gets;
> fbook:=eta->1/GAMMA(4/3)*int(exp(-p^3),p=eta...infinity);
Check to see if answers equivalent
> simplify(f(eta)-fbook(eta));
For a given eta value
> eta:=0.5;
Answers similar
> simplify(f(eta)-fbook(eta));
> eta:='eta';
Check that book answer satisfies ODE
> D(D(fbook))(eta)+3*eta^2*D(fbook)(eta);
Check that book answer satisfies necessary boundary conditions
> fbook(0); fbook(infinity);
Evaluate Maple answer at specific points, compare to book answer on graph
> for i from 1 to 3 do fp[i]:=simplify(f(i*.25)) od;
> with(plots): with(plottools):
> p1:=point(plot(fbook(eta),eta=0...2)):
> p2:=point([.25,fp[1]],color=blue):
> p3:=point([.5,fp[2]],color=blue):
> p4:=point([.75,fp[3]],color=blue):
> plo:=[op(p1),p2,p3,p4]:
> display(plo,labels=["eta","f"],title="Temperature Distribution");