Example 13.5-1: Heat Loss by Free Convection from a Horizontal Pipe
from Bird Stewart & Lightfoot, page 414
> restart;
The fluid properties of air at 1 atm and a film temperature of 90 F (550 R).
> mu:=0.046*lbm/ft/hr; rho:=0.0723*lbm/ft^3; Cp:=0.241*Btu/lbm/R; k:=0.0152*Btu/hr/ft/R;
To is the temperature on the surface and Tinf is far from the surface. The film temperature, Tf, is the average of To and Tinf.
> To:=100*F; Tinf:=80*F; Tf:=(((To+Tinf)/2-32*F)*5/9+273.15*F)*K/F*1.8*R/K; beta:=1/Tf;
Other important information
> d:=0.5*ft; deltaT:=(To-Tinf)*R/F; g:=4.17*10^8*ft/hr^2;
Find the Prandlt number, a dimensionless quantity of importance in convective heat transfer: equation 8.3-16
> Pr:=Cp*mu/k;
Find the Grashof number, also a dimensionless quantity used with heat transfer coefficients: equation 9.9-17
> Gr:=(rho^2*beta*g*d^3*deltaT)/mu^2;
> GrPr:= Gr*Pr;
For a long horizontal cylinder in an infinite fluid, when GrPr > 10^4, equation 13.5-3 is a good approximation for the Nusselt number.
> Num:=0.518*(GrPr)^.25;
From definition of Nusselt number on page 397 of BS&L
> hm:=Num*k/d;
The rate of heat loss: equation 13.1-1
> Q:=hm*A*deltaT;
> A:=evalf(Pi*d*L);
The rate of heat loss from a unit length
> QperL:=Q/L;