Figure 14.3-1
> restart;
In this problem, we are going to generate figure 14.3-1
> qble:=(lambda,T)->2*Pi*c^2*h/(lambda^5*(exp(c*h/
(lambda*kappa*T))-1)); 14.3-7
> kappa:=1.3805e-16*erg/K; h:=6.624e-27*erg*s;
c:=2.99793e10*cm/s;
> qble(lambda,T);
> evalf(qble(2e-4*cm,2000*K));
> unit:=erg/(cm^3*s);
> evalf(qble(2e-4*cm,2000*K)/unit); We need to do this since
plot wants to give blanks if the units are left in place.
> plot({qble(lam*1e-4*cm,2038*K)/unit,qble(lam*1e-4*cm,1538*K)
/unit,qble(lam*1e-4*cm,1204*K)/unit},lam=5e-2...10,
title=`Planck Dist. at 3700, 2800 and 2200F`,
xtickmarks=10,color=[red,green,blue]); plot of qble at three
temperatures, note that the temperatures have been converted from
F to K
We can also compute the integration at a constant T numerically without changing the variable of integration. > qbe1000:=evalf(int(qble(lambda*cm,1000*K), lambda=0...infinity));
> qbe1:=evalf(int(qble(lambda*cm,1*K), lambda=0...infinity));