Example 10.5-2 for water comparing the approximation in eq. 10.5-19c to the more accurate expression for the viscosity.
> restart;
> s:=dsolve({diff(T(x),x,x),T(0)=T0,T(delta)=Td},T(x)):
> assign(s);
> T:=unapply(T(x),x);
> mu:=proc(x)
> local T1;global T, B;
> T1:=T(x);
> mu0*exp(B*((1/T1)-(1/T0)));
> end:
> A:=mu(delta)/mu0;
> muapp:=proc(x)
> global delta, mu, mu0, A;
> mu0*A^(x/delta);
> end:
Here are the values found for water from Table 1.1-1
> B:=1868.6; mu0:=1.787; T0:=273.15; Td:=373.15;
> de:=diff(tauxz(x),x)=rho*g*cos(beta);
> s:=dsolve({de,tauxz(0)=0},tauxz(x)):
> assign(s);
> tauxz:=unapply(tauxz(x),x);
> de2:=tauxz(x)=-muapp(x)*diff(vz(x),x); Note muapp is used here
> s:=dsolve({de2,vz(delta)=0},vz(x)):
> assign(s);
> vz:=unapply(vz(x),x);
> de3:=tauxz(x)=-mu(x)*diff(vz3(x),x); Note mu is used here.
> s:=dsolve({de3,vz3(delta)=0},vz3(x)):
> assign(s);vz3:=unapply(vz3(x),x);
> beta:=Pi/4; delta:=.2; rho:=1; g:=980.665;
> vz(x);
> evalf(vz(x));
> evalf(vz(0));evalf(vz3(0));
> evalf(vz(delta));
> evalf(vz3(x));
> plot([vz(t*delta),vz3(t*delta)],t=0...1,color=[red,green]);
Green is the more accurate expression for viscosity as a function of position.
>