Section 10.1 part b. Looking at "del dot" or diverge to get eq. 10.1-9
> restart; > with(linalg): > v:=(x,y,z,t)->vector([vx(x,y,z,t),vy(x,y,z,t),vz(x,y,z,t)]); > q:=(x,y,z,t)->vector([qx(x,y,z,t),qy(x,y,z,t),qz(x,y,z,t)]); > g:=(x,y,z,t)->vector([gx(x,y,z,t),gy(x,y,z,t),gz(x,y,z,t)]); > s:=vector([x,y,z]); The position vector > IKE:=(x,y,z,t)->rho(x,y,z,t)*(U(x,y,z,t)+Vsq(x,y,z,t)/2); > ddq:=(x,y,z,t)->diverge(q(x,y,z,t),s); Note the second argument is s. Thus del dot q is an abbreviation for the terms involving conduction in eq. 10.1-8. This gives us del dot q. > ddvike:=(x,y,z,t)->diverge(scalarmul(v(x,y,z,t),IKE(x,y,z,t)),s); This is the del dot v*rho(U+(1/2)v^2) term in 10.1-9 > ddvike(x,y,z,t); > ddvp:=(x,y,z,t)->diverge(scalarmul(v(x,y,z,t),p(x,y,z,t)),s); > ddvp(x,y,z,t); Here is del dot v*p. Note tha Maple automatically splits up the product. > tau:=(x,y,z,t)->matrix([[txx(x,y,z,t),txy(x,y,z,t),txz(x,y,z,t)], [tyx(x,y,z,t),tyy(x,y,z,t),tyz(x,y,z,t)],[tzx(x,y,z,t),tzy(x,y,z,t), tzz(x,y,z,t)]]); Note that txy is the y component of the stress acting on a plane perpendicular to the x axis. > taudv:=multiply(tau(x,y,z,t),v(x,y,z,t)); tau dot v > taudv[1]; It has 3 components. Here is the first one. > ddtdv:=(x,y,z,t)->diverge(taudv,s); del dot tau dot v. These are the same 18 terms that you find in eq. 10.1-8 > RHS:= (x,y,z,t)->-ddvike(x,y,z,t)-ddq(x,y,z,t)+ rho(x,y,z,t)*multiply(v(x,y,z,t),g(x,y,z,t))-ddvp(x,y,z,t)- ddtdv(x,y,z,t); > RHS(x,y,z,t); The right hand side of eq. 10.1-9 > Accum:=dV*(IKE(x,y,z,t+dt)-IKE(x,y,z,t)); > LHS:=(x,y,z,t)->limit(Accum/(dt*dV),dt=0); > eq9:=LHS(x,y,z,t)-RHS(x,y,z,t); eq. 10.1-9 in expanded form. This is the reason for using the compact notation shown in the text.![]()