Section 9.8 Forced Convection
pp. 291-295
> restart;
> vz:=r->vzmax*(1-(r/R)^2); eq. 9.8-1
> C:=r->2*Pi*r; The cicumference of a circle of radius r
> Qr:=(r,z)->C(r)*qr(r,z)*dz; Heat flow in radial direction
through the surface of a ring at position (r,z)
> Qz:=(r,z)->C(r)*qz(r,z)*dr; Heat flow in axial direction
through the surface of a ring at position (r,z)
> Qconv:=(r,z)->rho*Cp*vz(r)*(T(r,z)-T0)*C(r)*dr; Heat flow
in z direction by convection through the surface of a ring
> eq:=Qr(r,z)-Qr(r+dr,z)+Qz(r,z)-Qz(r,z+dz)+Qconv(r,z)-Qconv(r,z+dz); Energy balance
> de:=simplify(eq/(C(r)*dz*dr));
> de1:=limit(de,dr=0); Taking the limit as dr goes to zero.
Note that D[1] indicates differentiation wrt the first argument: r.
> de2:=limit(de1,dz=0); Taking the limit as dz goes to zero.
We now get D[2] which implies differentiation wrt the second
variable: z.
> de2:=simplify(de2=0);
> qr:=(r,z)->-k*D[1](T)(r,z); qz:=0; eq. 9.8-10 for the radial
component of the heat flux, but zero for the axial term since we will
neglect it.
> de2; This is the dimensional form of the PDE. It should be
equivalent to eq. 9.8-12
> trans:={r=R*xi,z=zeta*rho*Cp*vzmax*R^2/k,T=T0+Theta*q1*R/k}; All three transformations in eqs. 9.8-16,17,18
with(PDEtools,dchange);
> newde:=dchange(trans,de2,[Theta(xi,zeta),xi,zeta]);
> newde:=simplify(%*R/q1);
> nops(newde); This is one way to get the LHS of newde
> op(1,newde);
> debook:=-(1-xi^2)*D[2](Theta)(xi,zeta)+
diff(xi*diff(Theta(xi,zeta),xi),xi)/xi; The difference
between the RHS & the LHS of eq. 9.8-19
> op(1,newde)-debook;
> simplify(%); Our equation agrees with the text.
> Theta:=(xi,zeta)->C0*zeta+psi(xi); Assuming we want the
solution for large zeta
> newde;
> s:=dsolve({newde,psi(0)=finite,D(psi)(1)=-1},psi(xi));
This does not work
> s:=dsolve({newde,D(psi)(1)=-1},psi(xi)); Leaving out the
BC at xi = 0.
> assign(s); psi:=unapply(psi(xi),xi);
> C0:=-4; To keep the solution finite at xi = 0.
> psi(xi);
> Theta(xi,zeta);
> eq:=-zeta=int(Theta(xi,zeta)*(1-xi^2)*xi,xi=0...1); eq. 9.8-25
> _C1:=solve(eq,_C1);
> Theta(xi,zeta); This agrees with eq. 9.8-31
> Theta:='Theta'; Let's see if we can transform BC#2 from dimensional to dimensionless form using the same tranformation as the one used on the DE. > trans; > BC2:=-k*D[1](T)(r,z)=q1; eq. 9.8-14 > newBC2:=simplify(dchange(trans,BC2,[Theta(xi,zeta),xi,zeta])/q1); Finally we get eq. 9.8-21
>