Section 9.7 Heat Conduction in a Cooling Fin
Converting the DE to dimensionless form before we solve it.
> restart;
> A:=2*B*W; C:=2*W; Q:=z->-k*D(T)(z)*A;
> eq := limit((Q(z)-Q(z+dz))/(k*A*dz),dz=0)=h*C*(T(z)-Ta)/(k*A);
> with(PDEtools,dchange); Now we change to dimensionless form for
the equation.
> trans:={z=zeta*L,T=Ta+Theta*(Tw-Ta)};
> newde:=dchange(trans,eq,[zeta,Theta(zeta)]); Arguments:
1) the set of transformations
2) the differential equation
3) the new functional ralation
> L:=N*sqrt(k*B/h); Replacing L with N as in eq. 9.7-8
> de2:=simplify(N^2*k*B*newde/(h*(Tw-Ta))); eq. 9.7-9
> s:=dsolve({de2,Theta(0)=1,D(Theta)(1)=0},Theta(zeta));
Using the BCs eq. 9.7-10 and 11
> assign(s);Theta:=unapply(Theta(zeta),zeta);
> simplify(Theta(zeta)-cosh(N*(1-zeta))/cosh(N)); Comparing our
solution with eq. 9.7-13
> expand(%,trig);
> eta:=int(Theta(zeta),zeta=0...1); The effectiveness factor
defined in eq. 9.7-15
> eta:=unapply(simplify(convert(%,trig)),N); This agrees with 9.7-16
> plot(eta(N),N=0.01...2); The effectiveness falls off as N increases
![[Maple Plot]](images/p288d1.gif)
>