9.5 Heat Conduction with Chemical Heat Source
First we will derive eq. 9.5-24
> restart;
> Sc:=T->Sc1*(T-To)/(T1-To); eq. 9.5-1
> A:=Pi*R^2; The bed area is constant
> Qcond:=z->A*qz(z); The rate of heat conduction at position z
> Qconv:=z->A*rho1*v1*Cp*(T(z)-T0); The rate of thermal heat
convection at position z
> LHS:=limit((Qcond(z+dz)-Qcond(z)+Qconv(z+dz)-Qconv(z))/(A*dz),dz=0); Deriving the Left Hand Side of eq. 9.5-8
> de:=simplify(LHS=Sc(T(z))); eq. 9.5-8 with eq. 9.5-1 for Sc
> qz:=z->-keff*D(T)(z); Fourier's Law assuming an effective
thermal conductivity
> de; This looks like eq 9.5-11
> with(PDEtools,dchange); Used in DEs to change variables.
New in Vr5.
> transf:={z=Z*L,T=To+Theta*(T1-To)}; A set that gives the
transformation to get old variables from the new ones.
Note the use of {} to make a set.
> Newde:=dchange(transf,de,[Theta(Z),Z]); Arguments in dchange:
1) the set of transformations
2) the differential equation
3) the new functional relation
> v1:=B*keff/(rho1*Cp*L); eq. 9.5-21 to replace v1 with B
> Sc1:=N*rho1*v1*Cp*(T1-To)/L; eq. 9.5-22 to replace Sc1 with N
> Newde;
> eq24:=simplify(Newde*L^2/(B*keff*(T1-To))); Canceling out the common
terms in the expression, we get eq. 9.5-24
![[Maple Math]](images/p279a1.gif)
>