9.2 Heat Conduction in a Cylinder with an Electrical Heat Source
> restart;
> A:=r-> 2*Pi*r*L; area of conduction
> Q:=r-> - k*A(r)*D(T)(r); Heat conducted across cylinder of radius r
in the direction of increasing r
> Q(r); the rate of thermal energy into cylindrical shell at r
> Q(r + dr); rate of thermal energy out across cyllindrical surface
at r+dr
> LHS:=limit((Q(r+dr)-Q(r))/dr,dr=0); Left hand side of eq. 9.2-5
> de:=LHS=A(r)*Se; energy balance, out - in = energy production by
electrical dissipation giving 9.2-6
> sol:=dsolve({de,T(R)=T0,T(0)=finite},T(r)); Solving 9.2-6 with
BC 9.2-8
> assign(sol); Giving T(r) a value
> T:=unapply(T(r),r); Making T a function
> dT:=T(r)-T0;
> dToverCon:=simplify((dT/(Se*R^2/(4*k))));
dTmax:=T(0)-T0;dTavg:=int((T(r)-T0)*r,r=0...R)/int(r,r=0...R);
QatR:=Q(R); Our answers agree with eqs. 9.2-13, 14, 15 and 16
![]()
![]()
![]()
>