
Non-Equilibrium Transport (BSL, pg 753-755) 
 
 Suppose we flow through an adsorption or chromatograph column so fast 
that the adsorption is not at equilibrium at a given point in the column.  This 
departure from equilibrium could be either due to diffusion resistance within the 
porous particles of the column or due to kinetic limitation of the adsorption 
process.  Alternatively, you may wish to separate different size macromolecules 
by the difference in the diffusivity of the macromolecules.  This is commonly 
known as size-exclusion chromatography.  Another case is measurement of the 
saturation of a nonaqueous phase by partitioning tracers.  We will first derive the 
analytical solution for the general case and then derive the mass transfer 
coefficients for specific cases. 
 
 The system is a homogeneous column with no dispersion in the direction 
of flow and uniform concentration on a macroscopic scale perpendicular to the 
direction of flow, i.e. the transverse direction. 

The packing material of the column may be porous 
particles such that we need to distinguish between intra-
particle porosity or micro-porosity and the inter-particle 
porosity or macro-porosity.  The total porosity is the sum 
of the two porosities. 
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Convective transport occurs only in the inter-particle porosity so it will be 
referred to as the flowing porosity.  At a given distance along the length of the 
column, it is always assumed that the concentration gradients in the inter-particle 
region are small enough so the concentration can be assumed to be uniform.  If 
the process is diffusion limited, then there will be a concentration gradient within 
the particle.  In this case, the concentration is uniform only in the inter-particle 
space and the porosity containing the uniform concentration is the flowing 
porosity, flowφ φ= .  The micro-porosity is considered to be the stationary phase.  
On the other hand, if the process is adsorption kinetic limited, then the 
concentration profile of the fluid within the particle as well as in the inter-particle 
space is assumed to be uniform and the total porosity should be used to describe 
the convective and diffusive transport through the column. In this case the 
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porosity of uniform concentration is the total porosity, t flow microφ φ φ φ= = + .  In 
either case, the column is modeled as consisting of a flowing phase (all of which 
may not be flowing) having a porosity φ with an interstitial velocity, v, and 
concentration, c, and a stationary phase with a concentration, cs.  The units of cs 
is defined such that it is amount of material per unit of flowing volume, φ.  Multiple 
fluid phases will be discussed later.  This description of the column is illustrated 
below. 
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 The overall concentration, flux, and the mass conservation equation 
are as follows. 
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At equilibrium, assume the relation between the stationary and flowing 

phase can be described by a linear relationship.  This linear relationship is 
expressed simply by a coefficient, K, which appears like an equilibrium constant 
but this coefficient must also include the parameters that express the 
concentration in the stationary phase as per unit volume of the flowing phase. 
Also, assume that the rate of transport between the flow and stationary phases is 
proportional to the departure of the flowing concentration from the concentration 
that would be in equilibrium with the surface.  The mass transfer coefficient and 
specific area, ck aφ , are defined with respect to the specific area per unit of pore 
volume.  Small mass transfer rates, i. e., negligible convection, is assumed. 
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This relationship is substituted into the conservation equation. 
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The following initial and boundary conditions are assumed. 
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 Time is transformed to a transformed time,  
 
 . ' /t t x= −
 
This transformed time is zero at a point in the column at the time when the 
concentration wave would have reached that point if no mass transfer to the 
stationary phase was to occur.  Expressing the time in terms of this transformed 
time transforms the conservation equations are as follows. 
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 The conservation equations and initial and boundary conditions are now 
as follows. 
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 The equations will be made dimensionless.  Since there is no downstream 
boundary condition, it is convenient to treat the system as if it is infinite in length.  
The variables are made dimensionless as follows. 
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The dimensionless variables can be determined by specifying that the bracketed 
terms equal to unity. 
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 We have a linear, first order initial value problem in the space and time 
variables.  Thus it can be solved by Laplace transformation in the space and time 
variables.  Hints to this solution is given in BSL Problem 23D.1.  The solution for 
Y is derived in a similar manner by taking the Laplace transform of the equations 
with respect to the space variable, ς .  The resulting analytical solution is as 
follows. 
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 Suppose we wish to evaluate the effluent concentration at x=L.  Then it is 
convenient to express time as pore volume throughput.  
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 The last two equations give a mapping between the physical variable, the 
pore volume throughput, , and the dimensionless independent variables.  If 
one wanted to calculate the effluent concentration as a function of the pore 
volumes of throughput, it is necessary to first calculate the dimensionless 
distance to the outflow end of the column, 

/ pQ V

(x Lς = , and then keeping this 
parameter fixed calculate the effluent concentration and pore volume throughput 
as a function of dimensionless time. 
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 The dimensionless effluent concentration is plotted below for several 
values of the dimensionless distance, Z=ζ, corresponding to the length of the 
column. 
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hat for a very short column, a column with a very small mass transfer 
nt, or very fast flow rate, the effluent concentration is very near the 
concentration soon after breakthrough at one pore volume of throughput.  
ther hand, notice that for a very long column, a column with a very large 
nsfer coefficient, or a very slow flow rate, the effluent concentration is 
r zero for some time after one pore volume of throughput.  It appears as 
luent concentration is retarded due to the mass transfer of solute to the 
ry phase. 

he extent of retardation can be seen more explicitly if the effluent 
ation is plotted as a function of the ratio of dimensionless time and 
nless distance as shown below. 
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In this figure, we see that the retardation in the limit of large dimensionless length 
is approaching a dimensionless time equal to dimensionless length, i.e. ratio 
equal to unity.  We can see from the expression for the pore volume throughput 
that when this ratio is equal to unity, the pore volume throughput (multiplied by 
the porosity ratio) exceeds unity by the parameter, K. 
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Thus the retardation of the effluent concentration in the limit of negligible mass 
transfer resistance is equal to the parameter, K.  This limiting case corresponds 
to the retardation calculated assuming equilibrium adsorption with a linear 
adsorption isotherm. 
 
Stationary phase concentration and equilibrium constant 
 
 Earlier we stated that the stationary phase concentration, cs, is expressed 
as amount of material per unit of flowing volume, φ .  This definition gives the 
stationary phase concentration the same units as the flowing phase 
concentration and thus simplifies the equations.  However, we must remember 
that φ  may be either the total porosity, tφ  or the flowing porosity, flowφ .  It will be 
the total porosity in case of adsorption rate controlling mass transfer and the 
flowing porosity or inter-particle porosity when mass transfer is controlled by 
diffusion within the particle.  
 
 Adsorption.  If the mass transfer rate limiting process is adsorption on to 
the surface of the solid, then the stationary phase concentration is calculated 
from the surface concentration.  Recall that the surface coverage could be 
expressed through the fractional coverage. 
 

 

2

, /
1

t t

s s s

A

c

b N

φ φ φ φ 1
φρ

φ
θ

= =
−

= Σ Γ

Γ =

 

where 
Σs specific surface area, m2/kg 
ρs adsorbent matrix density, kg/m3 
b2 coarea of molecule, m2 
θ fractional coverage, b2/a 
NA Avogadro's number, 6.022×1023 molecules mole-1 

Γ surface concentration, mole/m2 
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 The value of the equilibrium constant is the limiting slope of the adsorption 
isotherm in the Henry’s law limit. 
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 Absorption into a stationary oil phase.  Suppose the flowing phase is water 
and the stationary phase is oil.  The amount of the stationary or residual oil 
phase, Sor, can be determined by measuring the retardation of a partitioning 
tracer.  The flowing porosity is the product of the total porosity and the water 
saturation. 
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 The concentration in the oil must be expressed as per unit of flowing 
volume. 
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 The equilibrium distribution of a solute between the oil and water phases 
is expressed as the equilibrium partition coefficient, Ko/w.   
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The equilibrium ratio between the stationary and flowing phases can be 
determined from the above two equations. 
 

 
/

/

1

1

eq eqor
s o w water

or

or
o w

or

Sc K
S

SK K
S

=
−

=
−

c
 

 
 Size exclusion chromatography.  Suppose an aqueous solution of a 
macromolecule is flowed through a column packed with micro-porous particles.  
If the size of the micro-pores is small enough, the macromolecule will be entirely 
excluded.  We will consider the more interesting case of where the size of the 
pores are large enough for the macromolecules to enter but the macromolecules 
have a small diffusivity because of its size in the particular solvent.  The flowing 
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porosity will be the inter-particle porosity.  The micro-porosity is sometimes called 
the excluded pore volume. 
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 Mass transfer coefficient.  The mass transfer coefficient allows us to 
compute the diffusive mass flux as a function of a concentration difference over 
some length rather than a concentration gradient.  The dimensionless group to 
correlate the mass transfer coefficient is the Sherwood number (BSL pg. 675).  If 
the particles in a packed bed can be described as spheres with a diameter Dp, 
the Sherwood number gives an approximation for estimating the mass transfer 
coefficient (BSL pg 681, 686).  The diffusivity in a particle, DAs, is reduced by the 
micro-porosity and tortuosity.  
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 If the particles diameter cannot be directly measured as in a consolidated 
porous medium, it can be estimated from the porosity and permeability through 
the Blake-Kozeny model. 
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The Blake Kozeny model can also be used to estimate the specific surface area 
if the porous media has a narrow pore size distribution i.e., no micro-porosity.  
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 The product of mass transfer coefficient and specific area can be 
estimated from the above relations. 
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Assignments 
 
NEQ-1.  Perform the steps for the derivation of the analytical solution for the pair 
of dimensionless differential equations and boundary or initial conditions. 
 
NEQ-2.  Non-equilibrium adsorption.  Details will be presented Wednesday. 
 
NEQ-3.  Non-equilibrium partitioning.  .  Details will be presented Wednesday. 
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