
Surface Area 
 
 The specific surface area is a dominant parameter in models for 
permeability and in the transport of a species that can adsorb on the mineral 
surfaces.  The specific surface area is usually expressed as square meters of 
surface per gram of solid.  Here we will factor out the grain density and express 
the specific surface area as square meters per cubic centimeter of solid.  (Later 
we will express the specific surface as a ratio of pore surface/pore volume.)  The 
solid will be modeled as an oblate spheroid.  This is a solid of revolution of an 
ellipse about its minor axis.  The minor radius is b and the major radius is a.  
 

 The ratio, Sb/V, is  given 
by the following formula. 
(Mensuration formulas) 
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where the eccentricity is 
 

2 2a b
a

ε −
=  

 
The group, (Sb/V), will have 
consistent units if S is in square 
meters, V is in cubic centimeters, 
and b is in microns.  Figure 3.32 
plots the specific surface as a 
function of the minor radius, b.  The grain density (2.65 gm/cm3 for quartz) has 
been factored out and the specific surface area is expressed as per unit cm3 
rather than gram.  A upper coarse sand grain has a radius of about 103 microns 

 
Fig. 3.31 Parameters of an ellipse (CRC Standard Mathematical 
Tables, 1987) 

 
Fig 3.32 Surface to volume ratio of oblate spheroid 
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(one millimeter) and it has a surface area of about 10-3 m2 /cm3.  A silt or clay 
particle with a minor radius of about 1.0 micron has a surface area of about 1.0 
m2/cm3.  A smectite sheet with a thickness of about 10-3 micron (1.0 nm) will 
have a surface area of about 103 m2/cm3.  (Note: Is something is wrong here?  
The sphere appears to have a greater specific area than an oblate spheroid.  A 
sphere should be a body of minimum area for a given volume.  Answer:  For the 
same volume, an oblate spheroid will have its surface to volume ratio increasing 
in proportion to the 2/3 power of the aspect ratio. The specific surface is plotted 
as a function of the radius of the minor axis.  The major axis is greater than the 
minor axis ratio by the aspect ratio.) 
 

Clay type Area, m2/gram 
kaolinite 45 
illite 175 
montmorillonite 800 

 When evaluating adsorption, the 
specific surface area of sand grains 
usually is not of much interest compared 
to the clays contained in the rock.  For 
example the following table illustrates 
the range of specific areas that can be 
expected from clays (Corey 1990) 
 
 In addition to the importance of the surface/volume ratio to adsorption on 
porous media, the ratio of surface area to pore volume will be shown later to be 
an important parameter in models of permeability and NMR relaxation of fluids in 
the pore space.  The expression for the specific surface shows the surface to 
pore volume ratio to be inversely proportional to the length of the minor axis, b, 
for a given eccentricity.  The constant of proportionality is 3 for a sphere and is 
equal to 3/2 for a thin disk.  (Note:  I think it should be 2 for a thin disk.) 
 
 Porosity 
 
 Porosity is the fraction (or percent) of the rock bulk volume occupied by 
pore space.  The porosity may be divided into macro porosity and micro 
porosity in rocks that have a bimodal pore size distribution.  Some examples 
include: (1) sandstones with a significant amount of clays,  (2) sandstones with 
microporous chert grains,  i.e., interparticle and intraparticle porosity, (3) 
carbonate rocks with vuggy porosity (caverns are an extreme case) and matrix 
porosity,  (4) carbonate rocks with moldic porosity and matrix porosity,  (5) 
carbonate rocks with interparticle porosity and intercrystalline porosity,  (6) 
fracture porosity and matrix porosity.  The total porosity can also be divided into 
effective porosity and ineffective porosity.  Ineffective pores are pores with no 
openings or zero coordination number.  Effective porosity can be divided into 
Cul-de-sac or dead-end pores with a coordination number of one and catenary 
pores with coordination number of two or more.  These types of porosity are 
illustrated in Fig. 3.33. 
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Fig. 3.33  The three basic types of porosity. (Selley 1985) 

 
Sandstones 
 
 The rules for the factors 
governing the magnitude of the porosity 
is different for clastic (sandstone) and 
carbonate rocks.  The following 
relationships between porosity and 
textural properties apply for sandstones 
(Jorden and Campbell 1984).  Also see 
Fig. 3.7. 
1. Porosity is independent of grain size 
for the same sorting. 
2. Porosity decreases as sorting 
becomes poorer.  See Fig. 3.7 and 3.34. 
3. Porosity increases as grain sphericity 
(shape) decreases and as grain 
angularity (roundness) decreases.  The 
general, though not universal, tendency  
is for diagenesis to reduce original 
porosity of clastic rocks. 
 
 The alteration of porosity through 
diagenesis is illustrated in Fig. 3.35.  The 
porosity of the original sediment may 
originally be 40%-50%.  In regions of 
rapid sedimentation such as in a river 
delta, compaction is the primary 
diagenetic alteration mechanism.  
Subsidence may accompany the 
compaction.  Dissolution of some 
minerals and precipitation can result in 
consolidation of the rock and reduction 
of porosity by the process of cementation. 

 
Fig. 3.34  Effect of sorting on porosity 
(Bear 1972) 
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Fig. 3.35 Diagenetic pathways of sandstones (Selley, 
1985) 

 
Carbonate rocks 
 
 At deposition, carbonate sediments are highly to very highly 
porous.  Some sediments have porosity ranging from 0.40 to 0.78 at deposition.  
The following relationships between  porosity and textural properties apply to 
carbonates (Jorden  and Campbell 1984). 

 

1. Porosity is not correlated strongly with either median  grain size or sorting.  
2. Porosity is controlled largely by the amount of fines present -i.e., the larger the 
precent fines, the larger the porosity. 
3. Diagenesis of carbonate rocks can result in porosity that is either significantly 
less or greater than original porosity. 

3-         29



Permeability 
 
 The mobility, denoted by λ, is a transport coefficient of the porous medium 
for the volumetric flux of a fluid just as electrical conductivity and thermal 
conductivity are transport coefficients for the flow of electrical current and heat, 
respectively.  This transport coefficient was divided by Darcy into two factors (λ = 
k/µ), the permeability, k, which is a property of the porous medium and the 
viscosity, µ, which is a property of the fluid.  The permeability was originally 
conceived as a constant of a particular medium.  However, in reality the 
permeability is generally not spatially uniform, i.e.,  porous media are usually 
heterogeneous, depends on direction, i.e., is not isotropic, depends on the current 
stress conditions and past stress history, is a function of the electrolyte 
composition of the fluids, and depends on the amount and distribution of the fluid 
phases, i.e., depends on relativity permeability.  It is because of this highly 
variable nature of permeability that we need to know the factors that govern the 
value of permeability.  We will describe two models of the permeability.  They are 
both based on a bundle of capillary tubes model.  However, one is based on a 
packed bed of spherical particles and the other is based on a pore size 
distribution model. 
 
Packed Bed of Spherical Particles 
 
  One model for relating the flow resistance of porous media to the 
dimensions of the pores or particles is the Blake-Kozeny model (Bird, Stewart, 
and Lightfoot 1960).  This model represents the pore network of the porous 
medium as a bundle of capillary tubes with an average or equivalent radius, R, 
and an average length, L', that is somewhat longer than the system length.  The 
effective radius is related to a particle diameter, Dp, by applying the hydraulic 
radius concept and assuming that the porous medium is a bed of uniform 
particles.  The resulting expression is then compared with Darcy's law to 
determine an expression for the permeability of the medium in terms of the 
particle diameter and porosity. 
 
 Darcy's law is an empirical relationship between the flux and the driving 
force for laminar, single phase flow through porous media. 
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where 
 
 P p g zρ= −  
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The constant of proportionality between the flux and the driving force, commonly 
known as the mobility, λ, is directly proportional to the permeability, k, which is a 
property of the porous medium, and inversely proportional to the viscosity, µ, 
which is a property of the fluid. 
 
 The porous medium is modeled as a bundle of capillary tubes with a length 
L', that is greater than the system length, L, due to the tortuosity of the pore 
network.    It has been empirically determined that this tortuosity factor 
can be approximated by the factor 25/12. 

( 2'/L Lτ = )

 
 ( )2'/ 25 12L Lτ = =  
 
The average velocity in a capillary tube is given by the Hagen-Poiseuille law. 
 

 ( )2

8 '
o LR P P

v
Lµ
−

< >=  

 
The average velocity in the bundle of tubes is greater than the average velocity in 
the pore space of the medium because of the greater length traversed in the 
tortuous capillary.  Alternatively, it can be argued that the fluid it the porous 
medium must also traverse a greater length but the transverse components of 
velocity cancel in averaging over the porous medium and thus the average 
velocity in the pores of the medium is less than the average velocity in a tortuous 
capillary. 
 
 ( )/ 'pore capillary

v v L L=  

 
The average velocity of the fluid in the pores (v, the interstitial velocity) is 
related to the flux (u, superficial velocity, filtration velocity, or Darcy velocity) 
by the porosity of the porous medium   (φ, pore volume/bulk volume).  If the 
porous medium is random, then the fraction of the cross-sectional area open to 
pores is equal to the porosity.  Thus the flux is 
 

3-         31



 

( )
( )
( )

( )

( )

2

2

2

/ '

8 ' '/

8
3 25,

50 12

o L

o L

o L

qu
A

v
v L L

R P P
L L L

R P P
L

R P P
L

φ
φ

φ
µ

φ
µ τ

φ
τ

µ

=

=

= < >

−
=

−

−
= =

 

 
By comparing the above equation with Darcy's law we have, 
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The above equation is an expression for the equivalent pore radius of the porous 
medium assuming a bundle of capillary tubes model with a tortuosity of 25/12. 
 
 The wetted surface of a porous medium can be related to the permeability 
and porosity by introducing the concept of the hydraulic radius.  For flow in a 
capillary, the hydraulic radius is related to the radius as follows. 
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In porous media, the hydraulic radius can be determined as follows: 
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Note: The specific surface area in this equation is per bulk volume rather than 
grain volume as discussed earlier.  We can eliminate the hydraulic radius between 
the last two equations to express the equivalent pore radius in terms of porosity 
and specific area. 
 

 2R
a
φ

=  

 
Substituting into the equation we derived earlier for the flux through a bundle of 
capillary tubes, we have 
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Comparing this equation with Darcy's law, we have 
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This equation relates the wetted area of the porous medium to the permeability 
and porosity. 
 
 If we assume the porous medium to be a packed bed of uniform spheres, 
the particle diameter, Dp, can be related to the permeability and porosity.  The 
specific area (per unit bulk volume) for a spherical bead pack with a porosity φ is 
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This specific area is the surface area per unit volume of bed.  The surface area 
per unit volume of solid can be determined by dividing by the matrix volume/bed 
volume.  This is the same as the ratio of the area and volume of a sphere. 
 

 6
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By eliminating the specific area between the last two equations, we have an 
equation for the permeability as a function of the particle diameter. 
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Symbols and conversion to consistent (SI) units (The SI Metric System of Units 
and SPE Metric Standard, SPE, 1984) 
 
Quantity Symbol SI units Customary 

units 
multiply 
customary units by 

specific area (/ bulk vol) a m2/m3 m2/cm3 1.0       E+06 
area A m2 ft2 9.2903 E-02 
particle diameter Dp m mm 1.0       E-03 
   µm 1.0       E-06 
permeability k m2 µm2 1.0       E-12 
   darcy 9.8692 E-13 
   md 9.8692 E-16 
length L m ft 3.048   E-01 
pressure p Pa kPa 1.0       E+03 
   psi 6.8947 E+03 
flow rate q m3/s cm3/s 1.0       E-06 
radius R m   
superficial velocity u m/s ft/D 3.5278 E-06 
interstitial velocity v m/s   
volume V m3 ft3 2.8317 E-02 
   bbl 1.5899 E-01 
viscosity µ Pa⋅s cp 1.0       E-03 
porosity φ    
surface or interfacial tension σ N/m mN/m 1.0       E-03 
 σ N/m dyne/cm 1.0       E-03 
 
 The following table lists the permeability and porosity of some sand packs 
as a function of grain size and sorting.   
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Permeability (darcies) of artificially mixed and wet-packed sand [Jorden and 
Campbell 1984 (Beard and Weyl 1973)] 
 Size 
 Coarse Medium Fine Very Fine 
Sorting Upper Lower Upper Lower Upper Lower Upper Lower 
Extremely well sorted 475. 238. 119. 59. 30. 15. 7.4 3.7 
Very well sorted 458. 239. 115. 57. 29. 14. 7.2 3.6 
Well sorted 302. 151. 76. 38. 19. 9.4 4.7 2.4 
Moderately sorted 110. 55. 28. 14. 7. 3.5   
Poorly sorted 45. 23. 12. 6.     
Very poorly sorted 14. 7. 3.5      
 
Porosity of artificially mixed and wet-packed sand [Jorden and Campbell 1984 
(Beard and Weyl 1973)] 
 Size 
 Coarse Medium Fine Very Fine 
Sorting Upper Lower Upper Lower Upper Lower Upper Lower 
Extremely well sorted 0.431 0.428 0.417 0.413 0.413 0.435 0.423 0.430 
Very well sorted 0.408 0.415 0.402 0.402 0.398 0.408 0.412 0.418 
Well sorted 0.380 0.384 0.381 0.388 0.391 0.397 0.402 0.398 
Moderately sorted 0.324 0.333 0.342 0.349 0.339 0.343 0.356 0.331 
Poorly sorted 0.271 0.298 0.315 0.313 0.304 0.310 0.305 0.342 
Very poorly sorted 0.286 0.252 0.258 0.234 0.285 0.290 0.301 0.326 
 
Assignment 3.4  Calculation of Permeability as a Function of Grain Size 
 
 Calculate and plot the permeability (darcy) as a function grain size (mm) and 
porosity for grain size in the range (10-4 mm to 10 mm) and porosity of (0.2, 0.3. 
0.4, 0.5).  Also plot the measured values for the extremely well sorted sand packs 
listed above.  Post the average value of the sand pack porosity.  Use Fig. 2.8 to 
determine the grain size.  For a porosity of 0.4 tabulate the approximate grain size 
(in descriptive scale, mm, and µm) that will result in a permeability of 100 darcy, 1 
darcy, and 1 md. 
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Estimation of Permeability from Pore Size Distribution 
 
 Rapid methods to estimate rock permeability has always been a high 
priority in the petroleum industry.  Mercury porosimetry for measuring capillary 
pressure and calculation of permeability therefrom was introduced by Bob Purcell 
of Shell Oil Co. in 1949.  The method treats the porous medium as a bundle of 
capillary tubes with the pore size distribution quantified by the mercury-air 
capillary pressure curve.  The tortuosity is an empirical factor that brings the 
calculation into correspondence with measured permeability. 
 
 The average velocity in a capillary tube of radius Ri is described by the 
Hagen-Poiseuille law. 
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The capillary radius can be determined for the relation of the capillary pressure to 
an equivalent pore radius. 
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Thus the average velocity in a capillary tube can be expressed in terms of the 
capillary pressure at which that capillary is being entered be a nonwetting fluid. 
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Let S(Pc) denote the fraction of the pore space that is occupied by the wetting 
phase when the capillary pressure is equal to Pc.  Then dS is the incremental 
fraction of the pore space corresponding to Pc and Pc-dPc.  The interstitial 
velocity is the integral over all pores. 
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The superficial velocity (q/A) is then as follows. 
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This equation can be compared with Darcy’s law. 
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By comparing the last two equation, an expression can be derived for the 
permeability. 
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Tortuosity has not yet been considered to this point.  Purcell introduced a factor, 
called the “lithology factor” to bring the calculated permeability into 
correspondence with the measured air permeability.  We will use the tortuosity 
factor here to parallel the nomenclature for the packed bed. 
 

 ( )
( )

2
1

20

cos
2 c

dSk
P S

σ θ φ
τ

= ∫  

 
 Purcell observed that τ 
ranged from 2.8 for 1500 md 
sandstone to 12 for 1 md 
sandstone.  This may be compared 
with the value of 25/12 ≈ 2 for a 
packed bed of spheres. 
 
 Thomeer (1960) refined the 
method by introducing a model for 
fitting the measured capillary 
pressure data. 
 
 Mercury capillary pressure 
curves can be measured from drill 
cuttings when cored samples are 
not available.  Swanson (1981) 
observed that the low pressure 
portion of the capillary pressure 
curve was often different between 
measurements with small samples 
(e.g. drill cuttings) and larger core 
samples. This difference is thought 
to be due to the sample surface 
roughness and/or the accessibility 
of pores to the external surfaces.  
The low pressure portion 
corresponds the larger pores which 
contribute the most to permeability.  Thus he suggested using a point on the 
capillary pressure curve that is independent of sample size.  This point is the 
point of tangency of the curve of Pc versus mercury volume as a percent of bulk 

 
Fig. 3.36 Comparison of capillary pressure 
measured on plugs and cuttings (Swanson, 
1981) 
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sample volume with the 45° line on a log-log scale.  This method as well as the 
departure of the cuttings data is shown in Fig. 3.36.  Using this method, the 
correlation for both clean sands and 
carbonates is as follows. 
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This correlation is compared with 
measurements in Fig. 3.37.  In the 
event Thomeer parameters are 
known this equation can be 
expressed as follows. 
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Fig. 3.37  Correlation of brine permeability 
with capillary pressure data (Swanson, 1981) 

 
where 
BVP∞  Thomeer percent bulk volume occupied by mercury at infinite mercury 
 pressure (approximated by porosity) 
G Thomeer pore geometrical factor 
kw brine permeability 
Pc mercury capillary pressure, psi 
Pd Thomeer mercury/air extrapolated displacement pressure, psi 
Sb mercury saturation in percent of bulk volume (approximated by the 
 product of porosity and mercury saturation) 
( )/b c A
S P  correlating parameter taken at the point A (tangent to 45° line) of  

  capillary pressure curve 
 
Note that the exponent for this correlation agrees with the value predicted from 
Purcell’s theoretical model using Poiseuille’s equation.  Ma, Jiang, and Morrow 
(1991) give a recent review of estimating the permeability from capillary pressure 
data.
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Estimation of Permeability from Grain Size Distribution 
 
 We saw earlier (Beard and Weyl, 1973) that the parameters from the grain 
size distribution (grain size and sorting) has been used to correlate the porosity 
and permeability of clay-free unconsolidated sands.  Now that we have a model 
(Kozeny) for the permeability, we are in a position do develop a correlation for 
predicting permeability from the grain size distribution. 
 
 Sorting.  Sorting is usually expressed as qualitatively ranging from 
extremely well sorted to very poorly sorted.  The earlier section on Grain Size 
Distribution listed the range of the sorting coefficient, So, that corresponds to the 
qualitative measure of sorting.  Here we will use the arithmetic mean of the range 
to correspond to the qualitative measure of sorting.  Now we will express the 
sorting in terms of the standard deviation, σ, of the distribution of the logarithm of 
the grain size.  The sorting coefficient is defined as follows. 
 
  ( )1/ 2

25 75/oS d d=
 
Assume that the grain size can be described by a log normal distribution.  The 
grain size is then expressed as follows. 
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where 
 µ is the median of the distribution (log mean or geometric mean grain  
 diameter) 
 σ is the standard deviation of the log normal distribution 
 
The choice of the two expressions depends on whether the cumulative probability 
corresponds to less than grain size d or greater than grain size d.  The sorting 
coefficient is now expressed in terms of the logarithm of the grain diameter at the 
25 and 75 percentile.. 
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 The transformation from the qualitative sorting, to the sorting coefficient 
(Beard and Weyl, 1973), and to the standard deviation of the log normal 
distribution is summarized in following table. 
 
Sorting So σ 
Extremely well sorted 1.05 0.072 
Very well sorted 1.15 0.207 
Well sorted 1.3 0.389 
Moderately sorted 1.7 0.787 
Poorly sorted 2.35 1.267 
Very poorly sorted 4.2 2.128 
 
 Correlation of porosity with sorting. The porosity data of Beard and 
Weyl was correlated with the standard deviation (of the logarithm grain size 
distribution), Fig. 3.38.  
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Fig. 3.38 Correlation of porosity with sorting (R2 =0.93, 
excluding very poorly sorted data) 

 
The regression of porosity with standard deviation excluding the Very poorly 
sorted data gives the following linear relationship. 
 
 0.428 0.0998φ σ= −  
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 Tortuosity.  The Blake-Kozeny model determined a value of 25/12 for the 
tortuosity of a bed of uniform spherical particles.  We will let the tortuosity, τ, be a 
function of the sorting.  The Carman-Kozeny model is as follows. 
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 The tortuosity required to fit the Carman-
Kozeny equation to the measured permeability 
of Beard and Weyl was calculated from the above equation.  The grain size was 
estimated by transforming from the qualitative grain size to diameter in mm.  The 
calculated tortuosity and the regression excluding the coarse sand data are 
illustrated in Fig. 3.39. 

Grain size Dp
Upper coarse 1.30
Lower coarse 0.70
Upper medium 0.40
Lower medium 0.30
Upper fine 0.20
Lower fine 0.13
Upper very fine 0.10
Lower very fine 0.07

Tortuosity Required to Fit Permeability Model 
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Fig. 3.39  Tortuosity required to fit Kozeny model for 
permeability (R2=0.93, excluding coarse sand data) 

 
Note that the tortuosity extrapolates to 2.5 for zero standard deviation, a value 
very close to the 25/12 determined by Blake for a spherical bead back.  The 
linear regression, excluding the coarse sand data, give the following result. 
 
 2.46 7.72τ σ= +  
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 Since both the porosity 
and tortuosity are a function of 
the sorting, one would expect a 
cross-correlation between 
tortuosity and porosity.  The 
cross-correlation of the linear 
correlations for porosity and 
tortuosity and of the porosity 
and tortuosity of the individual 
sands are shown in Fig. 3.40.  
The equation for the cross-
correlation of the porosity and 
tortuosity correlations with 
sorting is as follows. 

Cross-Correlation of Tortuosity and 
Porosity
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Fig. 3.40 Cross-correlation of porosity and 
tortuosity (upper coarse sand data omitted) 

 
 35.6 77.3τ φ= −  
 
 Permeability predicted from porosity, grain diameter, and sorting.  
The permeability predicted from the Carman-Kozeny model using the correlation 
for tortuosity given above is compared with the measured permeability of Beard 
and Weyl in Fig. 3.41.  The predicted values for the upper coarse sand were 
much larger than the measured values and some are off the figure (i.e., >1000 
darcy). 

Permeability Predicted from Porosity, Grain 
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Fig. 3.41 Permeability predicted from porosity, grain 
size, and sorting (R2=0.87) 
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 If one has no other measurement other than the grain size distribution, 
then a measured porosity will not be available to use in the Kozeny model.  In 
this case we can use the correlation of porosity with sorting derived above.  The 
permeability correlated from the grain size and sorting is shown in Fig. 3.42. 
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Fig. 3.42 Permeability predicted from the Kozeny 
model using only grain diameter and sorting 
(R2=0.90) 
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 Independent test of correlation.  The comparisons between 
measurement and prediction above are biased because the correlations were 
derived from the measurements.  The correlations were used to predict the 
permeability distribution of an aquifer at Hill Air Force Base in Utah.  
Permeabilities were measured on selected samples to test the correlations.  The 
comparison is shown in Fig. 3.43.  The comparison is good for the high 
permeability samples but the deviation increases for the lower permeability 
samples.  It was discovered that some of the samples containing clays had 
clumps of sand grains that were interpreted as a large sand grain.  Thus the 
predicted permeability was too high for these samples.  A clay sample was 
analyzed to have a median grain diameter of 1.11 mm.  When the error was 
pointed out to the service company, they further pulverized the sample and 
reported a median grain diameter of 0.18 mm, apparently the result of only 
smaller clay aggregates.  Thus sieve analysis of clay containing sediments will 
not be accurate without adequate pulverization of the aggregates. 
 
Assignment 3.5  Estimation of permeability and porosity from sieve 
analysis. 
Estimate the permeability and porosity of sample SB9-71 from the sieve analysis 
data in the file, sb9_71.txt.  Cut and paste the rows with the grain size distribution 
into a file with the sample name and an extension of dat.  Process the data to 
estimate the median grain diameter and standard deviation with the MATLAB file, 
sieve2.m.  Show a plot of the fit of the lognormal distribution to the data.  The 
measured values of permeability and porosity are 48.3 darcy and 0.395, 
respectively. 
 
 Other correlations.  There is a frequent need to estimate permeability 
from grain size distribution.  A survey of the literature has not been made here.  
Recently Panda and Lake (1994) estimated permeability from the grain size 
distribution. Unfortunately, they used the parameters of the distribution of grain 
diameter rather than the logarithm of the grain diameter.  Their analysis is much 
more complex and they have to use a parameter for the skewness.  A distribution 
that is a normal distribution (not skewed) in the logarithm of the grain size has 
skewed distribution of the grain size.  Ostermeier (1995) recently developed a 
correlation using parameters of the grain size distribution (not the logarithm of 
grain size). 
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