
Equilibrium Transport 

 The propagation of composition change through an adsorption column will 
be examined for the ideal case of one dimensional, single component, single 
phase, isothermal adsorption or desorption in a homogeneous adsorbent 
medium.  It is assumed that the adsorbate is in local equilibrium with the 
adsorbent and there is no dispersion or bypassing in the column.  Also, the 
change in volumetric flow rate along the column due to expansion and adsorption 
or desorption is neglected.  The calculations with these assumptions are only the 
first step in design calculations. Calculations to include non-equilibrium and 
dispersion effects are deferred. 

Material Balance 
 The continuity equation for a nonreacting, nondispersing component i at 
equilibrium is as follows.  
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where 
Ci over-all concentration of component i (per unit bulk volume) 
Ni flux of component i (flow rate per unit area) 
 

Inter

Intra
 
Fig. 3.1 Inter particle and intra 
particle porosity 

This PDE is of a form commonly 
know as conservation laws and is first order 
in spatial and time derivatives.  It is a 
hyperbolic PDE and is usually solved by 
the method of characteristics.  Here we will 
treat only the case of a single dependent 
variable. 
 

The over-all concentration can be 
expressed in terms of the concentrations in 
the fluid phase and as a concentration on 
the solid, stationary phase per unit of pore 
volume. 
 
  ( )C c ci i= +φ is

 
where 
φ  porosity (inter particle and intra particle pore volume)/(bulk volume) 
ci concentration of component i in fluid phase, (moles)/(pore volume) 
cis concentration of component i on stationary phase, (moles)/(pore volume) 
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Assuming no dispersion due to molecular diffusion or convective dispersion 
results in the following expression for the flux. 
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Fig. 3.2 Schematic of ads
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q flow rate 
u volumetric flux or Darcy velocity 
 
 The continuity equation can now be expressed as follows. 
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The independent variables can be made dimensionless. 
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xD The dimensionless distance is a fraction of the system leng
Vp  pore volume of the column 
tD dimensionless time expressed as cumulative volume of in
 fraction or multiple of the pore volume, i.e., PV of throughp
 The concentration on the stationary phase is related to th
in the fluid phase through the adsorption isotherm.  In the c
dependent variable, it is expressed as the derivative of the adso
In the case of multiple dependent variables, it will be a Jacobian m

 
( )

( )

c c c
d c
d c

c c

is is i

is

i
is i

=

= '
 

Thus, 

 ( )1 0+ +c
c
t

c
xis

i

D

i

D

' =
∂
∂

∂
∂

 

 3-2
orption column 

th. 

jected fluid as a 
ut. 
e concentration 
ase of a single 
rption isotherm.  
atrix. 



Concentration Wave Velocity 
 
 The concentration wave velocity (called concentration velocity for short) is 
defined as the velocity that a particular value of concentration will propagate 
through the system.  We will see that the concentration velocity of an adsorbing 
or desorbing component is less that of a component that has no interaction with 
the solid phase.  The definition of the concentration velocity is as follows. 
 

 

v
d x
d t

L
A L

u A

d x
d t

v
d x
d t

c
d c

D

D d c

D

D d c

i

i

i

i

=

=

=

=

=

=

0

0

0

φ
 

 
where v u= / φ  is the interstitial velocity or the average fluid velocity.  The 
dimensionless concentration velocity is made dimensionless with respect to the 
interstitial velocity. 
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The concentration velocity can be found by expressing the concentration in terms 
of the independent variables and taking the total differential. 
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The dimensionless concentration velocity is the derivative of xD with respect to tD 
with the constraint that the total differential of ci is zero.  The final equation for the 
continuity equation is substituted into the equation to obtain an expression for the 
dimensionless concentration velocity as a function of the concentration. 
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 The concentration velocity is retarded relative to the interstitial velocity by 
the presence of the c'is term in the denominator.  This term is proportional to the 
slope of the adsorption isotherm and is a positive quantity.  Thus the 
concentration velocity in the case of a single fluid phase is equal to or less than 
the interstitial velocity.  The slope of the adsorption isotherm is a monotonic 
increasing function of concentration.  Thus the concentration velocity is a 
monotonic increasing function of concentration. 
 
 A geometric interpretation of the concentration velocity is illustrated for a 
system with a constant initial condition, , and constant boundary condition, 

.  All composition changes then originate at the origin (x,t)=(0,0).  The 
concentration waves are illustrated of curves of constant concentration in the 
distance-time space. 
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IC
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 Fig. 3.3 shows the 
trajectories of constant 
concentration values to be 
straight lines originating from the 
origin.  The slope of a trajectory in 
the distance-time space is the 
velocity.  The velocity is a function 
of concentration only (if the 
column medium is homogeneous 
as assumed).  Thus the slopes 
are constant.  The trajectories all 
originate at the origin because if 
the initial and boundary conditions are constants, then the composition changes 
along the axis occur only at the origin.  The equation for the trajectories is as 
follows. 

Time
Boundary Condition

 
Fig. 3.3 Distance-time diagram 

 

 
( ) ( )

( )

,

1
1 '

iD i D c i D

D
is i

x c v c t

t
c c

=

=
+

 

 3-4



 Rule:  Waves originating from the same point (e.g., constant initial and 
boundary conditions) must have nondecreasing velocities in the direction of flow.  
This is another way of saying that when several waves originate at the same 
time; the slower waves cannot be ahead of the faster waves.  If slower waves 
from compositions close to the initial conditions originate ahead of faster waves, 
a shock will form as the faster waves overtake the slower waves. 
 
 A shock wave is a composition discontinuity that results from a 
composition sequence in which a wave of slower velocity is ahead of a wave of 
faster velocity.  For example, if the concentration velocity of the initial condition is 
less than that of the boundary condition, then a shock will result.  Since the 
concentration velocity is a monotonic increasing function of concentration, a 
shock will result if the initial condition is a lower concentration than the boundary 
condition, i.e. during adsorption.  A corollary is that if the initial condition is a 
higher concentration than the boundary condition, i.e., during desorption, then 
there will be no shock. 
 
Shock Wave Velocity 
 
 The shock velocity can be determined from a material balance across a 
composition discontinuity that is propagating through the adsorption column.  The 
material balance will be over an increment of time equal to ∆ t during which the 
discontinuity propagates a distance equal to ∆x .  The material balance is the 
statement that the accumulation of material in a volume is equal to the input 
minus output of material to (from) the volume. 
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Fig. 3.4  Propagation of a composition 
discontinuity in a shock 
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 The expression for the 
dimensionless shock velocity is 
similar to that for the 
dimensionless concentration 
velocity except that the cord slope 
of the adsorption appears rather 
than the derivative.  This cord 
slope is between the initial 
condition and the boundary 
condition when the concentration of the initial condition is less than that of the 
boundary condition. 

I.C.

B.C.

cis

ci  
Fig. 3.5  Cord slope of isotherm determines 
shock velocity 

 
Spreading, Indifferent, Step, Self-Sharpening and Shock Waves 
 
 Wave:  A composition change that propagates through the system. 
 
 Spreading wave:  A 
wave in which neighboring 
composition (or saturation) 
values become more distant 
upon propagation. 
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Indifferent waves: A wave 
in which neighboring 
composition (or saturation) 
values maintain the same 
relative position upon 
propagation.   
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Step Wave: An indifferent wave 
in which the compositions change 
discontinuously. 
 
 
 
 
 
Self-Sharpening Waves: A wave 
in which neighboring 
compositions (saturations) 
become closer together upon 
propagation. 
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Shock Wave:  A wave of 
composition (saturation) discontinuity that results from a self sharpening wave. 
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 The type of waves that will occur in a system with specified initial and 
boundary conditions can be easily determined from the concentration 
dependence of the concentration velocity.   
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The concentration velocity is a function of the derivative or slope of the 
adsorption isotherm.  We saw earlier that the slope of the Langmuir isotherm is 
monotonically decreasing.  Thus the concentration velocity with a Langmuir 
isotherm is an increasing function of concentration.  Therefore, the wave in an 
adsorption process will generally be a shock and the wave in a desorption 
process will be a spreading wave.  The desoprtion process can have a shock if 
the isotherm has a slope that is not monotonically decreasing. 
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 Gas Chomatograph. Lets consider what happens in a gas chromatograph.  
The column is initially free of adsorbed components.  A small pulse of a sample 
containing volatile components is introduced to the inlet of the column and is 
eluted by some gas such as helium.  The front of the pulse is an adsorption wave 
and the back of the pulse is a desorption wave.  Gas chromatograph experiments 
are designed to be so dilute that the adsorption and desorption occurs along the 
linear, Henry’s law portion of the isotherm.  Here the slope is constant and thus 
the adsorption and desorption waves are indifferent waves which travel at the 
same velocity.  Also, the gas chromatograph experiment is designed to be so 
dilute that the adsorption of the different components are independent of the 
other components.  Thus the Jacobian matrix is diagonal and the concentration 
velocity of each component is independent of the presence of the other 
components.  The effluent concentration of the gas chromatograph column is 
Gaussian shaped because of dispersion.  If it is skewed, i.e., has a sharp front 
and a long tail, then the concentration is probably too large and the retention time 
will be a function of the concentration. 
 
Concentration Profiles and Histories 
 
 The concentration profile is a plot of the concentration versus distance at a 
particular point in time.  The effluent history is the effluent concentration (at xD=1) 
as a function of time.  We saw earlier that with constant initial and boundary 
conditions, an adsorption process will have a shock wave and a desorption 
process will have waves of continuous concentration changes.  The equations for 
the profiles and histories are summarized below. 
 
Profile: 
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Fig. 3.6  Profile and history for desorption process 
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Fig. 3.7  Profile and history for adsorption process 

 The adsorption process has only a wave with a single velocity, the shock 
wave.  The desorption wave has velocities that are a function of concentration.  
However, the most important velocity is the velocity of the boundary condition 
concentration.  This velocity determines the time required to regenerate the 
column.  If the boundary condition is zero concentration, then the velocity of the 
boundary condition concentration is determined by the Henry's law constant of 
the adsorption isotherm, i.e., slope of the isotherm in the limit of zero coverage. 
 
Adsorption Isotherm 
 
 The amount adsorbed was described as moles/(pore volume) whereas the 
adsorption isotherm was presented in the previous chapter as fractional 
coverage as a function of the partial pressure of the adsorbate.  Additional 
information about the adsorbent is necessary to transform between the two ways 
of presenting the adsorption isotherms.  The porosity was defined earlier.  
Additional parameters are the specific surface area and the matrix density of the 
adsorbate. 
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Σs specific surface area, m2/kg 
ρs adsorbent matrix density, kg/m3

 
Earlier we defined the following quantities. 
 
a area occupied per molecule on substrate, m2

b2 coarea of molecule, m2

θ fractional coverage, b2/a 
k Boltzmann's constant, 1.381×10-23 J K-1

NA Avogadro's number, 6.022×1023 molecules mole-1

pi partial pressure, Pa 
Pi

o  vapor pressure, Pa 
P pressure, Pa 
R gas law constant, = NA ×k, 8.314 J K-1 mole-1

 
The surface area per unit pore volume is as follows. 
 

 surface area / pore volume = −
Σ s sρ

φ
φ

1  

 
The moles of adsorbate per unit area is as follows. 
 

 adsorbate / area = =
1

2a N b NA A

θ  

 
Thus the adsorbed adsorbate per unit of pore volume is as follows. 
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 The concentration of adsorbate in the gas phase can be determined from 
the ideal gas law. 
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 The van der Waals isotherm was presented as ( )θ θ= pi .  The retardation 
is determined from the slope of the isotherm of cis versus ci. 
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The partial pressure must be expressed in units of Pa to have consistent units in 
this expression.  (p(mm Hg)×1.333×102=p(Pa))  In the case of a shock, the 
derivative is replaced with the cord slope. 
 The value of retardation that is most useful is the value at zero coverage 
since this determines the pore volume throughput required to regenerate to 
column.  The Henry's law constant can be used to determine this limiting value of 
retardation. 

 ( )lim ' lim
/p is p s s o

i
oi i

c k T
b P

d
d p P→ →=

−
0 0

2

1
Σ ρ φ

φ
θ  

Assignment 2 Adsorption of n-Heptane from Air Stream: Part 2 
Refer to the previous assignment.  Assume that nonequilibrium effects and 
dispersion can be neglected. 
 We now recognize that the column can be regenerated to zero coverage if 
it is regenerated with pure steam. At each temperature given in the earlier 
assignment, calculate the following.  Plot pore volume throughput to 
breakthrough versus temperature for the adsorption and regeneration 
(desorption). 
1)  List the equations needed to do the calculations. 
2)  ci  θ, and cis when pi=1.0 mm Hg. 
3)  Throughput to breakthrough during adsorption. 
4)  Throughput to breakthrough of pure steam during regeneration. 
5) What range of temperature should you do the adsorption? ...the regeneration?  
Discuss. 
Note: Although the regeneration has a shock at lower temperatures, calculate the 
regeneration using the Henry's law limit. 
Data: 

Σs =  1.0×106 m2/kg 
ρs = 2.1×103 kg/m3  
φ = 0.7 
1.0 atm= 1.0133×102 Pa 
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