Section 4.4 Flow near Solid Surfaces by Boundary Layer Theory > restart; > econ:=D[1](vx)(x,y)+D[2](vy)(x,y)=0; > emotx:=(x,y)->vx(x,y)*D[1](vx)(x,y)+vy(x,y)*D[2](vx)(x,y)+D(P)(x)/rho-nu*D[2](D[2](vx))(x,y); x component of eq. of motion (4.4-2) neglecting the second derivative of vx wrt x. This agrees with eq. 4.4-10. > vy:=(x,y)->-int(D[1](vx)(x,y1),y1=0...y); This should be a solution to the continuity equation. > econ; It is!
> BE:=P(x)+rho*ve(x)^2/2; Bernoulli Equation: 4.3-5 for potential flow and neglecting vy in the potential flow region. > P(x):=solve(BE,P(x));P:=unapply(P(x),x); > emotx(x,y); This gives 4.4-12.
> Ins:=array(1...4); > for k from 1 to 4 do > Ins[k]:=int(op(k,emotx(x,y)),y=0...b); > od; > Ins2:=-int(U(x,y)*D[2](vx)(x,y),y=0...b); > U:=(x,y)->int(D[1](vx)(x,y1),y1=0...y); > simplify(Ins2-Ins[2]);
> Ins2:=-U(x,b)*ve(x)+int(vx(x,y)*D[2](U)(x,y),y=0...b); Using a) int(UdV,0..b)=U(b)*V(b)-int(VdU),0...b) with V=vx(x,y) b) dV=vx(x,y)dy c) vx(x,0)=0, vx(x,b)=ve(x)
> nu:=mu/rho;Itot:=simplify(rho*(Ins[1]+Ins2+Ins[3]+Ins[4])); > Ibook1:=mu*D[2](vx)(x,0); > Ibook2:=-rho*diff(int(vx(x,y)*(ve(x)-vx(x,y)),y=0...b),x); > Ibook3:=-rho*D(ve)(x)*int(ve(x)-vx(x,y),y=0..b); > dif:=simplify(expand(Itot-Ibook1-Ibook2-Ibook3)); > op(1,dif);op(2,dif);op(3,dif);op(4,dif);op(5,dif);op(6,dif); > op(1,dif)+op(2,dif)+op(5,dif); These should cancel except for the last term: rho*int(vx(x,y)*D(ve)(x),y=0...b)=rho*D(ve)(x)*int(vx(x,y),y=0...b)> rho*D(ve)(x)*int(vx(x,y),y=0...b)+op(6,dif); These two then leave b*rho*D(ve)(x)*ve(x)
> b*rho*D(ve)(x)*ve(x)+op(3,dif); Leaving only: op(4,dif)
> op(4,dif); If b is large enough this should also vanish.