Section 18.4 Diffusion with Homogeneous Chemical Reaction
> restart;
The area for transport is constant: call it S as BS&L do.
> WA:=z->NAz(z)*S; Mass flow at z
> eq:=WA(z)-WA(z+dz)+R(z)*S*dz; Mass balance where R is the rate of production of A by chemical reaction: mols/(time*volume)
> R:=z->-kppp*cA(z); the reaction rate. kppp is the reaction rate constant per volume.
> deq:=-limit(eq/(S*dz),dz=0)=0; eq. 18.4-2
> NAz:=z->-DAB*D(cA)(z); eq. 18.4-3 for c constant and NBz=0.
> -deq; eq. 18.4-4
> with(PDEtools,dchange);
> tr:={cA=Gam*CA0,z=zeta*L};kppp:=phi^2/L^2*DAB;
> deq:=simplify(deq,assume=positive);
> newde:=-simplify(L^2*dchange(tr,deq,[Gam(zeta),zeta])/DAB/CA0); eq.18.4-7
![[Maple Math]](images/sec1841.gif)
> s:=dsolve({newde,Gam(0)=1,D(Gam)(1)=0},Gam(zeta)):
> assign(s);
> Gam:=unapply(Gam(zeta),zeta); eq. 18.4-9
> Gbook:=zeta->cosh(phi*(1-zeta))/cosh(phi);
> simplify(Gam(zeta)-Gbook(zeta));
> expand(%); The right hand form in eq. 18.4-9 is also correct.
![[Maple Math]](images/sec1842.gif)
> AvgG:=int(Gam(zeta),zeta=0...1);
> simplify(convert(AvgG,trig));
> %-tanh(phi)/phi; Subtracting off 18.4-11
> simplify(%); The average value of cA/cA0 is tanh(phi)/phi.
![[Maple Math]](images/sec1843.gif)
> cA:=cA0*Gam(z/L):cA:=unapply(cA,z); phi=sqrt(kppp*L^2/DAB)
> D(cA)(0);
> simplify(NAz(0)); This agrees with eq. 18.4-12
![[Maple Math]](images/sec1844.gif)
> plot(AvgG,phi=0...2,title="Average value of cA/cA0 vs sqrt(kppp*L^2/DAB)");
![[Maple Plot]](images/sec1845.gif)
> plot(NAz(0)*L/DAB/cA0,phi=0...2,title="L*NAz(0)/(CA0*DAB) vs sqrt(kppp*L^2/DAB)");
![[Maple Plot]](images/sec1846.gif)