Example 12.4-1 Heat Transfer in Forced Convection Laminar Flow along a heated Flat Plate.
We start with the equations we checked in sec124.mws.
First eq. 12.4-4 leaving out the gravitational term.
> restart;
> Ibook1:=mu*D[2](vx)(x,0);
> Ibook2:=-rho*diff(int(vx(x,y)*(ve(x)-vx(x,y)),y=0...b),x);
> Ibook3:=-rho*D(ve)(x)*int(ve(x)-vx(x,y),y=0..b);
> Ibmot:=Ibook1+Ibook2+Ibook3;
> ve:=x->vinf;
> Ibmot;
Now using 12.4-6,7 for the assumed velocity profile in the boundary layer.
> vx:=(x,y)->vinf*(2*y/delta(x)-2*(y/delta(x))^3+(y/delta(x))^4);
> Ibmot;
> b:=delta(x);Ibmot; The integration should go only to delta(x)
> s:=dsolve({Ibmot,delta(0)=0},delta(x));
> assign(s[1]);delta:=unapply(delta(x),x);
Now looking at the energy equation: 12.4-5
> Ieb1:=k*D[2](T)(x,0);
> Ieb2:=-rho*Cphat*diff(int(vx(x,y)*(Tinf(x)-T(x,y)),y=0...be),x);
> T:=(x,y)->T0-(T0-Tinf0)*(2*y/deltaT(x)-2*(y/deltaT(x))^3+(y/deltaT(x))^4);
![[Maple Math]](images/ex1241b1.gif)
> Tinf:=x->Tinf0;
> deltaT:=x->Delta*delta(x);
> Ieb2;
> be:=Delta*delta(x); If Delta<1, the integrand will be zero for y>deltaT
![[Maple Math]](images/ex1241b2.gif)
> Ieb:=simplify(Ieb1+Ieb2);
> Cphat:=Pr*k/mu;
> simplify(Ieb);
![[Maple Math]](images/ex1241b3.gif)
> eq12414:=2*Delta^3/15-3*Delta^5/140+Delta^6/180-37/Pr/315; Eq. 12.4-14
> simplify(7*180*eq12414*Pr); Obviously Ieb will be zero if eq. 12.4-14 is satisfied.
> Pr1:=solve(Ieb,Pr);
> Pr1:=unapply(Pr1,Delta);
> Pr1(1);
> Pr1(0.5);
> with(plots):
> loglogplot(Pr1(x),x=.2...1,color=blue);
![[Maple Plot]](images/ex1241b4.gif)