Example 11.4-7 One Dimensional Compressible Flow
a second version
> restart;
> econt:=D(rhovx)(x)=0; Continuity
> emot:=rhovx(x)*D(vx)(x)=-D(p)(x)+(4/3)*mu*D(D(vx))(x); Motion
> een:=rhovx(x)*Cp*D(T)(x)=k*D(D(T))(x)+vx(x)*D(p)(x)+(4/3)*mu*(D(vx)(x))^2; Energy
> s:=dsolve({econt,rhovx(0)=v1*rho1},rhovx(x)); rho*vx is constant
> assign(s);rhovx:=unapply(rhovx(x),x);
> een2:=lhs(emot)*vx(x)+lhs(een)=rhs(emot)*vx(x)+rhs(een); Getting rid of the pressure term in the energy equation by using the equation of motion.
> een2:=simplify(%/(v1*rho1));
> int(een2,x); We can not integrate it.
> int(lhs(een2),x); We can't even integrate one side of the equation.
> int(rhs(een2),x);
> simplify(diff(Cp*T(x)+(1/2)*vx(x)^2,x)-lhs(een2)); Going the other direction to check on the validity of BS&L's answer in 10.5-57
![[Maple Math]](images/ex1147b1.gif)
> Cp:=Pr*k/mu; Replacing Cp with the Prandtl Number
> simplify(k/(Cp*rho1*v1)*diff((4/3)*Pr*D((vx^2)/2)(x)+Cp*D(T)(x),x)-rhs(een2)); The right hand side also checks out.
![[Maple Math]](images/ex1147b2.gif)
> Pr:=3/4; Suggested as the only value for which we can get a solution.
> een2; Here is our equation.
> T:=x->(C1+C2*exp(rho1*v1*Cp*x/k)-vx(x)^2/2)/Cp; Here is the solution in 10.5-58
> een2; Is this OK?
> simplify(%); Yes.
![[Maple Math]](images/ex1147b3.gif)
> T(x);
> C2:=0;eq:=T(x1)=T1;
> C1:=solve(eq,C1);
> C1:=subs(vx(x1)=v1,C1); Remember that Pr=3/4=Cp*mu/k, so 3/4(k/mu)=Cp.
> simplify(een2);
![[Maple Math]](images/ex1147b4.gif)
> ien:=simplify((1/2)*vx(x)^2+Cp*T(x)=(1/2)*v1^2+Cp*T1); The integrated energy equation is now satisfied.
![[Maple Math]](images/ex1147b5.gif)
> emot;
![[Maple Math]](images/ex1147b6.gif)
> iemot:=x->v1*rho1*vx(x)+p(x)-(4/3)*mu*D(vx)(x)-C3;
> D(iemot)(x); This can be seen to be identical to the motion equation.
![[Maple Math]](images/ex1147b7.gif)
> C3:=p1+rho1*v1^2;
> iemot(x);
![[Maple Math]](images/ex1147b8.gif)
>