Example 10.2.2 Heat Conduction in a Cylinder with an Electrical Heat Source and Newton's Law of Cooling
Following the same steps as BS&L used.
> restart;
> A:=r-> 2*Pi*r*L; area of conduction
> Q:=r-> A(r)*qr(r); Heat conducted across cylinder of radius r in the direction of increasing r: qr is the flux of energy.
> Q(r); the rate of thermal energy into cylindrical shell at r: eq. 10.2-2
> Q(r + dr); rate of thermal energy out across cyllindrical surface at r+dr: eq. 10.2-3
> V:=r->A(r)*dr; Volume of shell
> Epro:=(r)->V(r)*Se; Thermal production rate by electrical current: eq. 10.2-4
> Epro(r);
> LHS:=limit((Q(r+dr)-Q(r))/dr,dr=0); Left hand side of eq. 10.2-5
> de:=simplify(r*(LHS=Epro(r)/dr)/A(r)); energy balance, out - in = energy production by electrical dissipation giving 10.2-6
> sol:=dsolve({de,qr(0)=finite},qr(r)); Solving 10.2-6 with BC 10.2-8 to get 10.2-9
> assign(sol); Giving qr(r) a value
> qr:=unapply(qr(r),r); Making qr a function of r
> deFL:=qr(r)=-k*D(T)(r); Fourier's Law
> sol:=dsolve({deFL,D(T)(R)=-h/k*(T(R)-Tair)},T(r)); trying to solve the de with the BC 10.2-22
> sol:=dsolve(deFL,T(r)); leaving out the BC.
> assign(sol);T:=unapply(T(r),r);
> bc:=-k*D(T)(R)=h*(T(R)-Tair);
> _C1:=solve(bc,_C1);
> dT:=simplify(T(r)-Tair); Eq. 10.2-23
> dT:=unapply(dT,r);
![[Maple Math]](images/ex10221.gif)
> T0:=simplify(T(R));
> dT(R); Checking eq. 10.2-24
![[Maple Math]](images/ex10222.gif)