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Ground states of group-IV nanostructures: Magic structures of diamond and silicon nanocrystals
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We have developed an effective model to investigate the energetic stability of hydrogenated group-IV
nanostructures, followed by validations from density-functional theory calculations. The Hamiltonian of XmHn

(X = C, Si, Ge, and Sn) is expressed analytically by the atom numbers (m, n) and the magic numbers of
diamond nanocrystals and silicon nanocrystals are determined. It is found that surface reconstructions would
alter the morphology of silicon nanocrystals significantly and consequently induce dramatic modulation on their
electronic properties.
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I. INTRODUCTION

Semiconductor nanocrystals (NCs) have been greatly at-
tractive and intensively investigated.1,2 These nanomaterials
have extended the physics of reduced dimensions and offered
the opportunity for fundamental study of the regime between
nanostructure and bulk states,3 which have also brought such
wide applications as nanoscale electronic and optical devices,4

fluorescent biological labels,5 quantum computation media,6

etc.
Various hydrogenated group-IV [C,7,8 Si,9,10 and Ge

(Ref. 11)] nanocrystals with sp3 hybridizations have been
synthesized and isolated, in which size-dependent optical
gaps have been observed. To demonstrate the quantum
confinement, theoretical studies have focused on the optical
properties of nanocrystals12,13 and employed various methods
for accurate calculations of the adsorption spectrum.14,15 How-
ever, surface reconstruction is predicted to be energetically
preferable, which would dramatically reduce the optical gaps
and decrease excitonic lifetimes.16 Meanwhile, the spatial
charge distributions of the highest occupied and the lowest
unoccupied states are also crucial in the design of the optical
nanodevice.17

Properties of nanomaterials mostly depend on their struc-
tures, however, it is challenging to determine the stable
nanostructures from numerous possible candidates due to two
main obstacles: (i) the accurate calculation of the total energy is
necessary but often computationally expensive, and (ii) many
isomeric structures should be considered and the number of
these structures increases sharply as the size increases. To
reduce the time cost, recent studies18,19 calculated the energies
using classical potential in Hansel-Vogel (HV) formalism,
and searched the magic structures of silicon nanowires using
genetic algorithms. The energy decomposition approach20,21

is also efficient for stability investigations, where the total
energy is separated into contributions from the bulk, surfaces,
and the edges between the facets. It is shown that the ground
state of thinnest silicon nanowire is of a five-fold rather than a

single-crystal type,20 which is in agreement with experimental
observations.22

In this paper, we investigate hydrogenated group-IV
nanocrystals by both model analysis and first-principles
approaches. We propose an effective model and give an
analytical expression of the Hamiltonian for XmHn (X =
C, Si, Ge, and Sn) with the numbers of atoms (m,n), as is
confirmed by density-functional theory (DFT) calculations.
Magic numbers of diamond nanocrystals obtained in our
searches are consistent with the experimental results. We also
predict stable Si NCs with unique electronic properties.

II. MODEL ANALYSIS

In this section, we study the stability of hydrogenated
group-IV nanocrystals XmHn, according to the effective model
of Hamiltonian. We find that there is an analytical dependence
of total energies on the numbers of atoms (m,n), which greatly
enhances the searching efficiency of stable nanostructures. We
obtain possible stable structures with the stochastic technique
and determine the ground-state structures by the simplex
method.

A. The effective Hamiltonian model

In our model, we assume the Hamiltonian of XmHn (X =
C, Si, Ge, and Sn) to be

H =
m∑

i=1

(
Hi

int + Hi
0

) − mμX − nμH (1)

where Hi
int and Hi

0 are the contributions from interactions and
self energies, and μX(μH) is the chemical potential for X(H)
atom. The sum runs over all the group-IV atoms and we have
Hi

0 = μX0 + piμH0 , where pi is the number of H atoms in
the saturated group of the ith X atom and μX0 (μH0 ) is the
isolated atomic energy for the X(H) atom. Hi

int includes the
energy contributions from the bonded X-atom pair (−EX-X)
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FIG. 1. (Color online) Possible (m, n) for XmHn. The convex
corresponds to the local minimum and stable structures of hydro-
genated nanostructures. Light and dark balls represent H and X atoms,
respectively.

and the saturated group of the ith X atom (−E−XHpi
). As

shown in the inset of Fig. 1, every X atom has four nearest
neighbors and every X-X bond is shared by two X atoms.
This leads the energy contribution corresponding to the ith
X atom to be −2EX-X for pi = 0, and −1.5EX-X − EX-H

for pi = 1, analogically. Thus, Hi
int = −(2 − 0.5pi)EX-X −

E−XHpi
. We assume that the interaction between X and H

atoms is localized and thus E−XHpi
= piEX-H, pi = 0,1,2,3.

With n = ∑m
i=1 pi , we found that Eq. (1) can be written

as H = am + bn, where a = (−2EX-X − μX + μX0 ) and
b = (EX-H + 0.5EX-X − μH + μH0 ), where μX and μH are
the environment-related parameters, while EX-X(EX-H) and
μX0 (μH0 ) can be derived from first-principles calculations or
experimental data.

B. Determination of ground-state structures
by the simplex method

Instead of scanning the parameter space (a, b),23 the simplex
method24–26 is used to efficiently determine the combinations
of lowest energy from a set of possible integer combinations
(m,n), which indicates that the stable configurations corre-
spond to corners, edges, and faces.26 We will obtain the ground
states if we construct enough restricting inequalities and solve
the corresponding linear equations.26 In our case, we have
m � 1 and n � 2m + 2. The key task is to determine the lower
limit of n for a certain m, for which it is difficult to find out the
expected inequalities. We search the least n as follows:27 (i)
start from an arbitrary configuration of XmHn (n � 2m + 2),
allowing X atoms on the surface to walk randomly in the crystal
lattice and saturate the configuration with H atoms where
necessary, and (ii) accept the new configuration when the
H-atom number is nonincreasing, otherwise the new geometry
will be accepted with the probability of 1/|dn|, where dn is
the increment of the H-atom number. n converges into the
minimum after hundreds of iterations.

Figure 1 shows the upper and lower limit of n as a function
of m. It is not a standard simplex because both m and n will
be increasing with an increasing nanocrystal size of XmHn.
However, we will obtain a convex quadrangle ABCD if a
restriction of m � 8 is considered. The convex A (1, 4) and
B (6, 12) correspond to stable configurations, while C (8, 16)
and D (8, 18) do not since they are induced by the artificial
restriction of m � 8. Thus, XH4 and X6H12 will be stable
configurations for group-IV nanocrystals. Analogically, we
will obtain a new convex quadrangle (in red and yellow) and
find another stable configuration of X10H16 in place of X6H12

if we consider a restriction of m � 12. In addition, we find that
X14H20, X18H24, and X22H28 are also stable configurations. It
should be noted that, except for XH4, all other nanocrystals
are metastable states since they are local-convex ascribed to
the size confinement. As is known, the size of nanocrystals
increases with increasing reaction time as more material is
added to the surfaces.

In general, the total energies (Etot) obtained by DFT do not
involve the environment-related chemical potentials and corre-
spond to the Hamiltonian in Eq. (1) with μX = μH = 0. Thus,
we have Etot = a0m + b0n, where a0 = (−2EX-X + μX0 ) and
b0 = (−EX-H + 0.5EX-X + μH0 ). According to our model, we
conclude that: (i) Etot can be estimated in the analytical
expression of (m,n), which indicates the fast calculation of
total energies; (ii) only a few possible candidates of XmHn

should be considered, as isomeric structures with the same
composition will possess the same Etot; and (iii) magic
numbers of XmHn correspond to the candidates with the most
or least n for a certain m, which have been found by our
iterations. In the searching process of magic numbers, we
obtained different stable structures with the same composition,
because the new configuration is accepted when the H atom
number is nonincreasing. Interestingly, there are few isomeric
structures for candidates with magic numbers and the structure
is unique for X6H12, X10H16, and X14H20.

III. FIRST-PRINCIPLES CALCULATIONS

In this section, we investigate hydrogenated group-IV
nanocrystals XmHn with first-principles approaches. We first
verify our model by the dependence of Etot on the numbers of
atoms (m,n), together with the linear relationship of cohesive
energy on the ratio (n/m). According to the phase diagram
of chemical potential, we determine the stable structures of
diamond NCs, in excellent agreement with the experimental
observations. For Si NCs, we find that surface reconstructions
would enhance the stability and also induce significant
modulation on the electronic properties, such as the gap values
and charge distributions of the highest-occupied molecular
orbitals (HOMOs) and lowest-unoccupied molecular orbitals
(LUMOs).

A. Model verification

To verify the reliability of our model, we investigate
the energetic stability of group-IV nanocrystals (with the
example of diamond NCs and Si NCs), using the DFT method
implemented in the Vienna Ab initio Simulation Package
(VASP).28,29 We use Vanderbilt ultrasoft pseudopotentials30

and the exchange correlation with the generalized gradient
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FIG. 2. (Color online) Cohesive energies of diamond NCs and
Si NCs as a function of α. Inset shows the dependence of Etot on (m,
n). The dots are obtained from the first-principles calculations.

approximation given by Perdew and Wang.31 We set the
plane-wave cutoff energy to be 350 eV and the convergence of
the force on each atom to be less than 0.01 eV/Ȧ. A 1 × 1 × 1
mesh of k space is used and the vacuum distance is 9 Ȧ, which
is enough to make the systems isolated.

As shown in Fig. 2 (inset), the dots of (m,n, Etot) for dia-
mond NCs and Si NCs satisfy the plane equations respectively,
which confirms the model result of Etot = a0m + b0n. We
define the cohesive energy (Ecoh) per X atom in the nanocrys-
tals XmHn as Ecoh = (mμX0 + nμH0 − Etot)/m. According
to our model, we have: Ecoh = 2EX-X − (0.5EX-X − EX-H)α,
where α is the ratio (n/m). As predicted, the cohesive energy
decreases with the decrease of α following a linear relationship
(shown in Fig. 2) approaching the value of bulk material
(−μdiamond bulk = 7.65 eV and −μSi bulk = 4.67 eV) when α

reaches zero.32

B. Stable structures of diamond NCs

In the following, we investigate the stable structures of
diamond NCs (CmHn). We calculated Etot of CmHn with
m � 12 by DFT and obtained the formation energies as a
function of hydrogen chemical potential by Ef = (Etot −
mμX0 − nμH0 − nμH)/m. As shown in the inset of Fig. 3,
we find that there is a critical point μ0 (about −2.6 eV,
our model indicates μ0 = 0.5EC−C − EC−H � −2.63eV) of
chemical potential, at which the formation energies are the
same for all these nanocrystals. Below the critical point C10H16

is the most stable, while CH4 is the most stable when μH is
above the critical point. As predicted, CH4 and C10H16 are
stable states when the number of carbon atoms m � 12. It
should be noted that there is certain difference in Etot of
isomeric structures obtained from the DFT, while our model
indicates Etot would be the same. However, the corresponding
Ef is similar for isomeric structures, especially for μH far away
from the critical point. We can consider only one structure for
each composition to enhance the efficiency, as is predicted in
our model.

5 10 15 20

-6

-5

-4

-3

-2
 D F T
 Model
 CnH2n+2
 CnHmin

F
or

m
at

io
n 

E
ne

rg
y 

(e
V

)

Number of Carbon atoms

C6H12

C10H16
C14H20 C18H24 C22H28

FIG. 3. (Color online) Formation energies as a function of the
number of carbon atoms for diamond NCs with μH = −4 eV. Inset
shows the chemical phase diagram for CmHn with m � 12. Light and
dark balls represent H and C atoms, respectively.

Figure 3 shows the formation energies for various CmHn

with the chemical potential of hydrogen μH = −4 eV. The
hollow circles are from our model prediction, which is in
excellent agreement with the ones from the DFT calculations
(marked with solid triangles). For a certain m, the formation
energy decreases as the hydrogen atom number n decreases.
The stable structures can be found at the local minimum of
the formation energies, such as C10H16, C14H20, C18H24, and
C22H28, which are consistent with our model analysis and
experimental observations.7,8 We can also conclude that, for
the chemical potential μH > μ0, the formation energy will
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FIG. 4. (Color online) Formation energies as a function of the
number of silicon atoms for Si NCs with and without the dimer
reconstructions. Inset shows the possible dimer reconstructions and
their effect on the number of hydrogen atoms. Light and dark balls
represent H and Si atoms, and the size of dark balls corresponds to
Si atoms on different layer.
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FIG. 5. (Color online) Charge distribution of HOMO and LUMO
orbital of Si20H32, Si20H18, and Si25H20. Charge density isosurfaces
(blue/dark gray and red/gray) represent 50% peak amplitude.

decrease as the hydrogen atom number n increases for a certain
m, thus the stable structures are well-known alkanes CmH2m+2.
It is noted that larger members of diamond NCs obtained
experimentally have smaller surface-to-volume ratios and
correspondingly lower H/C ratios, though higher diamondoids
have been also synthesized and isolated.7 Our model indicates
that diamond NCs with the least H atoms are ground states
when μH < μ0, which correspond to low Ef and thus high
thermal stability.

C. Stable structures and electronic properties of Si NCs

Without surface reconstruction, magic numbers of XmHn

are the same for all group-IV elements (e.g., diamond NCs
and Si NCs).33 In the following, we consider the formation of
dimer reconstruction for Si NCs, which is common and often
dominates surface reconstruction.10,16,20 Our DFT calculations
showed that the Ecoh of Si NCs with reconstructions also follow
the linear dependence on the H/Si ratio (shown in Fig. 2).

As is shown in Fig. 4, the decrement of H atom number
varies with possible reconstructions (e.g., S1 and S2). We
construct a matrix according to the arrangement of Si atoms
with −SiH2: The element M(i,j ) in the matrix is 1 when a
dimer could be formed by the ith and j th Si atoms, otherwise,
it is 0 (M1and M2 for S1and S2, respectively). The max
decrement of hydrogen atom number is equal to the rank of

the matrix.34 We search the least H number n for Si NCs
(SimHn) with a certain m through a similar procedure. With
Etot from the DFT, we obtained Ef of Si NCs with and without
reconstructions with μH = −4 eV. The dimer reconstruction
decreases Ef and changes the stable structures. For example,
Si10H16 might not be the stable structure as Ef is higher than
that of Si8H12, which can be obtained from Si8H16 with two
dimer reconstructions. Besides, Si12H16, Si15H18, Si20H18, and
Si25H20 are new stable structures. The reconstructions also
have significant effect on the symmetry of Si NCs. Stable Si
NCs without reconstructions tend to be octahedron enclosed
by (111) facet (e.g., Si35H36). However, the reconstructed
Si20H18 has the symmetry of C3v and Si25H20 is approximately
spherical.

Silicon NCs has been an ideal system of demonstrating
quantum confinement, as the gap values are inversely propor-
tional to the dot diameter.12 The gap value of Si20H28 (the stable
structure for Si NCs without surface reconstructions) is 3.80
eV, and both HOMO and LUMO orbits are concentrated in the
central area (shown in Fig. 5). However, surface reconstruction
dramatically decreases the gaps and the decrement of value
depends on the number of Si atoms. The gap value of Si20H18

(2.84 eV) is a local minimum for SimHn with m � 26, while it
is 3.19 eV for Si25H20 with larger size. It is noted that HOMO
orbits are mainly distributed inside while LUMO orbits are
concentrated near the surface for Si20H18 and Si25H20. For
LUMO orbits, there is dimerlike distribution for Si20H18, while
the distribution is localized for Si25H20. These nanostructures
with spatial separation of orbital distributions might be useful
in Si-based laser devices, as they would avoid electron-
hole recombination and increase the lifetime of exciton
carriers.17

IV. SUMMARY

In summary, we have proposed an effective method for
the analytical expression of the Hamiltonian of H-terminated
group-IV nanostructures, and provided an efficient technique
of searching stable structures of XmHn (X = C, Si, Ge,
and Sn). We showed that the isomeric structures are nearly
energetically degenerated and thus the computational cost can
be greatly reduced, which is an important complement to
the popular DFT calculations for stability determination. The
ground-state structure of Si NCs are surface reconstructed,
where the highest occupied states are confined in the core and
the lowest unoccupied states are distributed on the surface.
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