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Two-dimensional materials have drawn tremendous attention
in the recent past in terms of both interesting fundamental

physics and possible applications in future generation devices.
Graphene and hexagonal boron nitride (h-BN) are the two most
promising candidates for this purpose.1�3 Single layers of
graphene and h-BN have been fabricated and found to be stable
at room temperature.4�8 The most significant difference be-
tween the two isostructured materials lies in their electrical
conductivity. Whereas graphene is a semimetal and a very good
conductor,1,9 BN is an insulator (band gap ∼ 6 eV),10 which
limits their applications in electronic devices. This void can be
bridged by combining graphene and BN to make semiconduct-
ing material with a stoichiometry of BxCyNz.

11 Other than the
solid solution of B, C, and N, it is also necessary to explore the
possibility of fabricating a graphene�BN composite material,
where the two phases coexist separately, but in the same plane.
Such a novel composite is the focus of the present work.

Free standing nanostructures, such as nanoribbons12,13 and
quantum dots14 (QDs) of graphene, have been discussed exten-
sively in the literature. The effect of electron confinement leads to
size-dependent electronic properties in graphene nanostructures.
Interestingly, properties of graphene nanostructures are also
dependent on the edge shapes, namely, zigzag (ZZ) and armchair
(AC).1 For example, the tight bindingmodel predicts ZZ and AC
nanoribbons to be metallic and seimconducting, respectively.1,15

Density functional theory-based calculations further show that
ZZ edges are spin-polarized and corresponding nanoribbons are
also semiconducting in nature.12�14 Similar properties have been
reported for graphene nanoroads16 and QDs17 embedded in
graphane. Fundamentally free-standing and graphane-embedded
nanostructures of graphene are similar. Whereas electrons are

confined by an infinite potential (due to vacuum) in the former,
the latter creates a finite potential well (due to wide-band-gap
graphane) for the semimetallic graphene phase.

In terms of device integration and mechanical integrity,
nanoroads or QDs of graphene in a graphane matrix appear to
be more promising than artificially cut freestanding nanostruc-
tures. A recent experimental discovery shows that insulating
h-BN can also be used to host the graphene QDs.18 Instead of
forming a solid solution of B, N, and C, graphene and h-BN have
been found to occur in separate domains inside the composite.18

Immiscibility of the two phases has also been predicted by first-
principles calculations.19,20 In this paper, we show that such a
novel material can be qualitatively different from a graphe-
ne�graphane composite due to polarity of the h-BN matrix.

It is well known that edge14 and interface17 shape determines
the properties of free-standing and embedded graphene QDs.
Thus, in this work, we consider dots of hexagonal shape, making
ZZ and AC interfaces with the constituent atoms of the h-BN
matrix. Two of the representative unit cells are illustrated in
Figure 1. The interatomic distance between any atomic pair is
1.45 Å (equal to the bond length of BN) prior to the relaxation.
Because graphene has a smaller equilibrium interatomic distance
(1.42 Å), the QD after relaxation will be under tensile stress,
which ensures overall planarity of the C�BN composite struc-
ture. The formation energy per atom ε(n) of a graphene QD,
consisting of n(=2 � nC) carbon atoms, is defined as

nεðnÞ ¼ EQDtot � ECnC � EBNnBN ð1Þ
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ABSTRACT: The quest for novel two-dimensional materials has
led to the discovery of hybrids where graphene and hexagonal
boron nitride (h-BN) occur as phase-separated domains. Using
first-principles calculations, we study the energetics and electronic
and magnetic properties of such hybrids in detail. The formation
energy of quantum dot inclusions (consisting of n carbon atoms)
varies as 1/

√
n, owing to the interface. The electronic gap between

the occupied and unoccupied energy levels of quantum dots is also
inversely proportional to the length scale, 1/

√
n—a feature of

confined Dirac fermions. For zigzag nanoroads, a combination of the intrinsic electric field caused by the polarity of the h-BNmatrix
and spin polarization at the edges results in half-metallicity; a band gap opens up under the externally applied “compensating”
electric field. For armchair nanoroads, the electron confinement opens the gap, different among three subfamilies due to different
bond length relaxations at the interfaces, and decreasing with the width.
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where Etot
QD is the total energy of the C�BN composite system

consisting of nC (nBN) number of C pairs (BN pairs); EC (EBN) is
the energy of a C pair in graphene (BN pair in h-BN). As shown
in Figure 1, the formation energy of graphene quantum dots
follows a general trend ε(n) ∼ constant/

√
n, irrespective of

the nature of the interface. This is due to the energy cost of
graphene�BN interface formation, proportional to the peri-
meter of the graphene QD and thus scales as

√
n, which is

divided by the QD size n, resulting in 1/
√
n dependence for ε(n).

The interface formation energy γ determines the interface
stability and equilibrium shape of QDs. Qualitatively, it is clear
from Figure 1 that the armchair QDs are energetically more
favorable at larger sizes. Although this hints at the possibility that
γAC (armchair interface formation energy) is smaller than γhZZ
(average of zigzag interface formation energy, to be explained
later), we cannot quantify it from quantum dot-based calcula-
tions. Note that, in addition to γ, ε(n) also includes strain energy
(due to 2% lattice mismatch between graphene and h-BN) and
hexagon corner formation energy. Though the latter does not
scale with size and is insignificant for large QDs, the former
cannot be neglected, because it is proportional to the area of a
given graphene QD. To explicitly calculate the values of γAC and
γhZZ, the same technique as we described in ref 17 is followed. As
shown in Figure 2, we form a composite nanoroad, consisting of
BN and graphene single layers with a size of L � w each. The
formation energy of the composite C�BN supercell can be
decomposed into strain energy and interface formation energy as,

1
2L

½Etot � ðEC þ EBNÞN� ¼ ðYε2w=2þ γÞ � γ0ðwÞ ð2Þ

where Etot is the total energy of the supercell havingN number of C
and BN pairs each; EC (EBN) is the energy of a C pair in graphene
(BN pair in h-BN). Y and ε are the elastic constant and strain,
respectively. We keep the L fixed, and calculate γ0(w) for various
widths. As shown in Figure 2, the computed values follow a linear
behavior, as expected, and the intercept gives the formation
energies of the respective interfaces: γhZZ = 0.28 eV/Å and γAC =
0.22 eV/Å. However, because of the lack of inversion symmetry, it
is not straightforward to calculate the energy of zigzag interfaces,
because a ZZ nanoroad of graphene is terminated by B|C and N|C
interfaces at the opposite sides (here, we report the average γhZZ).

One of the main reasons of interest in QDs is their electronic
properties, which can be tuned by controlling the size of the dot.
Such a feature is the manifestation of the effect of electron
confinement. It is well known that graphene is a gapless material9

and its low-energy excitations are Dirac fermion-like.1 Confine-
ment of Dirac electrons (by the wide-band-gap h-BNmatrix) in a
circular dot of radius R leads to Eg ∼ 1/R,21 instead of 1/R2

dependence for Schr€odinger fermions in regular quantum dots,
Eg being the energy gap between the highest occupied�lowest
unoccupied molecular orbital (HOMO�LUMO gap). In
Figure 3, we plot the HOMO�LUMO gap at the Γ point,
obtained from first-principles calculations. Least-square fit re-
veals that the gap follows Eg ∼ n�x, where x is found to be 0.38
and 0.48 for AC and ZZ QDs, respectively. Approximating the
hexagon by a circular QD and noting that the radius R∼√

n, we
observe that the gap follows approximately Eg∼ 1/

√
n∼ 1/R, as

expected for Dirac fermions.21 However, such an approximation
cannot explain higher Eg in AC QDs, because circular dots are
terminated by a mixture of ZZ and AC edges. On the contrary,
the hexagonal QDs we consider are bound purely by either ZZ or
AC interfaces. Whereas electron confinement by AC edges
results in a gapped energy spectrum, localized states at the ZZ
edges produce partially flat bands and sharp density of states at the
Fermi level.22 However, such a metallic behavior becomes appar-
ent above a critical size of 7�8 nm in ZZ QDs.23 Below that (we
study up to a size of 2�3 nm), they have finite Eg, which follow
the power law consistent with Dirac electron confinement.23 The
distinct trend observed in Figure 3 reflects the near metallic nature
of large ZZ QDs compared to AC QDs of the same size.

In view of the possible applications of these QDs in electronic
devices, it is important to determine the quality of the interfaces

Figure 1. Formation energy of embedded graphene QDs (shown in the
inset) as a function of size n.

Figure 2. γ0 plotted as a function of nanoroad width w. The ZZ and AC
interface energy is determined from the intercept of the linear fit of the
data points. Consult eq 2 for a detailed explanation.

Figure 3. HOMO�LUMO gap at the Γ point, plotted for the embedded
ZZ and AC graphene QDs as a function of size n.
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in terms of electron confinement. From the band decomposed
electron densities of the HOMO and LUMO, as shown in
Figure 4, it is clear that “leakage” to the BN phase is negligible.
The charge density of the HOMO and LUMO is spread over the
entire dot of the AC QD (Figure 4a,b). On the other hand, the
same quantity is localized at the edges in the ZZQD (Figure 4c,d).
Such electron densities are due to the edge states formed by theπ
electrons of C, previously observed in hydrogen-terminated
zigzag graphene nanoribbons or QDs.1,22 As mentioned before,
diatomic BN forms two inequivalent classes of zigzag interfaces
with graphene, terminated by either B or N. This lowers the
symmetry of a hexagonal graphene QD in BN, where HOMO
and LUMO charge densities are localized at the B- and N-termi-
nated edges, respectively (see Figure 4c,d).

The existence of edge localized states in ZZ-terminated
graphene nanostructures result in spin-polarized edges.1 For
example, magnetism is predicted in free-standing hexagonal ZZ
QDs of graphene above a critical size.14 We expect similar
features in hexagonal ZZ graphene QDs embedded in h-BN.
However, even the largest of the QDs in our calculation are
below the threshold size for the onset of magnetism, as reported
in the literature.14 The computations are expensive because not
only do we have to deal with a larger graphene QD but also we
have to include the BN matrix, effectively making the system too
large. Thus, we shift our focus to nanoroads, a relatively small
system, although it captures all the essential physics.

On the basis of first-principles calculations, magnetism in
hydrogen-terminated freestanding zigzag nanoribbons has been
discussed in detail by Son et al.12,13 The magnetic moments are
localized at the zigzag edges, arranging themselves ferromagne-
tically along a particular edge. Of all the possible magnetic
configurations, the one where two opposite edges are coupled
antiferromagnetically has the lowest energy.12,13 Staggered sub-
lattice potential generated due to themagnetic ordering opens up
a band gap, which also depends on the ribbon width.12 A similar
effect has been observed in graphene nanoroads embedded in
graphane.16 Zigzag graphene nanoroads in hexagonal boron
nitride have similar magnetic orientations (shown in Figure 5a).
Down (up) spin density is mostly localized at the C atom,making
an interface with N (B), at the two opposite boundaries
of the graphene nanoroad. Interestingly, the band structure

(shown in Figure 5b) resembles that of a half-metallic system.
Whereas the down spin electrons are metallic, a direct band gap
exists for the up spin electrons.

Half-metallicity has been reported in graphene nanoribbons in
an external electric field, applied across the ribbon width.13 As
shown here, a carefully designed graphene�BN composite
eliminates the need of an external electric field to achieve a
half-metallic material. This is the most spectacular manifestation
of the effects of polarity of BN on the electronic properties of
C�BN composites. The two edges of the graphene nanoroad are
at different electrostatic potentials, which produces an effective
electric field, directed from the B|C interface to the N|C inter-
face. To verify this hypothesis, we perform the following
Gedanken experiment. We apply an external electric field in

Figure 4. Band decomposed electron densities of the HOMO and LUMO of (a, b) AC and (c, d) ZZ graphene QDs embedded in h-BN. For ACQDs,
the charge density of the HOMO and LUMO is uniformly spread over the entire dot. For ZZQDs, the HOMO and LUMO charge density is localized at
the B- and N-terminated edges, respectively.

Figure 5. (a) The spin density of a graphene nanoroad embedded in
h-BN. Red and blue correspond to down and up spin density, respec-
tively. Band structure of the same nanoroad in (b) zero electric field and
(c) an externally applied electric field. The system changes from half-
metallic to semiconducting in a finite field, applied across the NC to the
BC interface. (d) Band gap of both the spins as a function of applied field.
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the direction (along the N|C to B|C interface) reverse to the
effective intrinsic field. As shown in Figure 5c, the “compensat-
ing” field indeed opens up a direct energy gap at the X-point to
the otherwise gapless down spin band. The band gaps as a
function of applied field are shown in Figure 5d. Both spins have
similar Eg (∼0.2 eV, at the X-point for down spin and away
from the X-point for up spin) in an external electric field of
0.15�0.20 eV/Å. An electric field of a similar strength has been
reported to produce half-metallicity in zigzag graphene
nanoribbons.13 It is difficult to apply such a huge electric field
in practice. In principle, it is more realistic to design an intrinsic
half-metal, made of a composite of graphene and BN, where the
polarity of the latter naturally creates an effective electric field
across the graphene nanoroad. We have investigated nanoroads
with a width of 2�4 nm, all of which show similar half-metallic
behavior. Although the intrinsic electric field weakens with
increasing nanoroad width, the electrostatic potential difference
(field times the width) between the two interfaces of the zigzag
graphene nanoroad remains strong enough to induce half-
metallicity. A similar dependence has been reported for zigzag
graphene nanoribbons, where the critical external field required
for half-metallicity has been found to be inversely proportional to
the ribbon width.13

Finally, we briefly discuss armchair graphene nanoroads em-
bedded in h-BN. Such a structure has been shown in Figure 6a,
Na being the number of C�C dimers along the width of the
nanoroad, and d1, d2... are corresponding bond lengths. Armchair
graphene nanoroads can be classified into three families with a
gap∼ 1/Na for each one of them. As shown in Figure 6b, the gap
size follows the order of Eg(3p) > Eg(3p þ 1) > Eg(3p þ 2),
which is distinct from armchair graphene nanoribbons,12 but
similar to armchair graphene nanoroads in graphane.16 Whereas
the Eg(3p þ 2) family has the smallest gap, in the case of both
armchair nanoribbons and nanoroads, Eg(3p) and Eg(3p þ 1)
occur in an opposite sequence.12Weperforma simple tight binding
analysis to understand this, using the following Hamiltonian

H ¼ � t ∑
Æi, jæ

c†i cj þ h:c: ð3Þ

where t is the nearest-neighbor hopping integral, ci
† (cj) creates

(annihilates) an electron at site i (j), and h.c. is the Hermitian
conjugate. From first-principles calculations, t has been found to be
2.7 eV for an equilibrium interatomic distance of 1.42 Å among C
atoms in graphene.24However, t ismodified as theC�Cbond length
changes from its equilibrium value.25 Using first-principles-based

structural relaxation, we find that the smallest and largest C�C
distance in an embeddedACgraphene nanoroad is d1 = d13 = 1.42Å
and d2 = d12 = 1.46 Å, respectively. The rest of the C�C bond
lengths lie in the range of 1.42�1.44 Å. On the basis of this
observation, we choose the simplest model where the hopping
integral of the atoms connected by d2 and d12 are taken to be 0.9t.
The reduced value accounts for the enhanced bond length. The rest
of the hopping integrals are kept at their equilibriumvalue of 2.7 eV.
As shown in Figure 6c, the model correctly captures the hierarchy
for the band gaps of the family of AC graphene nanoroads
embedded in h-BN.

In conclusion, we have investigated the formation energy and
electronic and magnetic properties of selected QDs and nano-
roads of graphene embedded in h-BN. AC QDs and nanoroads
have a lower formation energy than that of ZZ. Dots and AC
nanoroads are semiconducting with a tunable band gap (by
controlling the size) and are suitable for optoelectronic applica-
tions. ZZ nanoroads of graphene possess spin-polarized edges,
making an interface with the h-BNmatrix. Because of the polarity
of h-BN, two opposite interfaces of a ZZ graphene nanoroad are
at different electrostatic potentials, creating an intrinsic electric
field across the width of the nanoroad. This results in half-
metallicity, and a band gap can be opened and tuned under the
influence of an externally applied electric field, ideal for the
purpose of fabricating spin transport devices, such as spin valves,
magnetic tunnel junctions, magnetoresistive random access
memory (MRAM), etc.26 We further note that a recent impor-
tant development27 allows one to separate and clearly define the
energies of the opposite ZZ edges of BN or its interfaces (γZZ�B

and γZZ�N instead of just their sum-average, γZZ) so that the
edge energy and the Wulff construction can be computed for
arbitrary direction,28 to determine their dependencies on the
chemical potential of B or N and, therefore, to suggest possible
control of the 2D morphology and physical properties.27

’METHOD

We use density functional theory (DFT)-based first-principles
calculations as implemented in the PWSCF code29 with a plane-
wave basis set and ultrasoft pseudopotentials. Electron ex-
change and correlation is treated within a framework of
Perdew�Burke�Ernzerhof30 generalized gradient approxima-
tion (GGA). We set the kinetic energy cutoff for wave functions
to be 40 Ry. We use supercell geometry with a vacuum of∼15 Å
in “nonperiodic” directions to decouple the interaction between
two images. In all the QD calculations, the Brillouin zone is

Figure 6. (a) Graphene nanoroad having an armchair interface with the BN phase.Na is the number of C�C dimers along the nanoroad width. d1, d2...
are the bond lengths of the respective dimers. Band gap, obtained from (b) DFT and (c) tight binding calculations, plotted as a function of nanoroad
width of an armchair graphene nanoroad embedded in BN.

http://pubs.acs.org/action/showImage?doi=10.1021/jp200671p&iName=master.img-006.jpg&w=365&h=122


E dx.doi.org/10.1021/jp200671p |J. Phys. Chem. C XXXX, XXX, 000–000

The Journal of Physical Chemistry C ARTICLE

represented by the Γ point. A k-point grid of 48(24) � 2 � 1 is
used to sample the Brillouin zone of the ZZ (AC) nanoroads.
We relax the structures fully until the force on each atom
(total energy change for ionic minimization) is less than
10�3 Ry/au (10�4 Ry).
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