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We study the effect of twist on the electronic structure of H-terminated armchair graphene

nanoribbons, for both relaxed and unrelaxed unit cell size. We investigate the band gap change as a

function of the twist angle for different ribbon widths. In the case of unrelaxed unit cell size, the

band gap closes for smaller twist angles as opposed to relaxed unit cell size. We calculate strain

energy as a function of twist angle and show its direct correlation with the reduction of the band

gap. Furthermore, the conductance is calculated at arbitrary degree of torsion. VC 2011 American
Institute of Physics. [doi:10.1063/1.3606553]

Since the isolation of graphene sheets by mechanical

exfoliation of pyrolytic graphite,1 there has been numerous

studies on electronic and mechanical properties of graphene

(for a review, see Ref. 2 for instance). Because of its very

high charge carrier mobility,1,3,4 graphene has opened up

great possibilities in electronic device applications.

Graphene nanoribbons (GNRs) are quasi one dimen-

sional cuts of graphene. They can form zigzag, armchair, or

chiral edge patterns. Atoms along the edge of a zigzag GNR

(ZGNR) come from the same sublattice of graphene,

whereas atoms from two different sublattices form bonds

along the edge of an armchair GNR (AGNR).

GNRs have been studied extensively.5–8 Hydrogen ter-

minated ZGNRs have ferromagnetic spin ordering along

each edge and antiparallel spins for opposite edges.5 There

are different techniques for synthesizing GNRs; Scanning

Tunneling Microscope tip etching,9 metallic nanoparticle

atomically precise etching,10 and unzipping carbon nano-

tubes,11 to name a few.

It has been shown that all hydrogen terminated GNRs

are semiconducting, with the band gap gradually going to

zero for large widths.5 Detailed electronic properties of

GNRs vary with the edge pattern. AGNRs fall into three

families, depending on their width. With N being the number

of dimer lines in an AGNR, these families are N¼ 3p � 1,

3p, and 3p þ 1, where “p” is a positive integer. According to

local density approximation calculations, the N¼ 3p � 1

family has narrow band gap.5 The gap is inversely propor-

tional to the width in all three families.

In this letter, we present our results for the change in elec-

tronic structure caused by a twist in the ribbon.12 We studied

the N¼ 3p � 1 and N¼ 3p þ 1 families of AGNRs, opti-

mized their geometric configurations and calculated their

band structure using Density Functional Theory (DFT)-based

tight binding method13 and helical symmetry.14,15 As will be

shown later, in both families of ribbons, the band gap closes at

some certain twist angle. This can be useful in some applica-

tions such as switches and sensors. For the N¼ 3p family, the

band gap does not close as a result of twist,16 and for this rea-

son, it is not considered here. Also, ZGNRs are not considered

since spin polarized calculations are needed for correct

accounting of the ferromagnetic edge states, which are not

included in our tight binding scheme. It should be mentioned

that if the edges are not H-terminated, the twist will be

spontaneous.17

The use of helical symmetry is due to the fact that tradi-

tional unit cells for small twist angles become unlimitedly

large and the computations become unfeasible. The program

used is the Trocadero code18,19 with helical symmetry imple-

mented.20 The structures of flat hydrogen terminated GNRs

are relaxed until the total energy reduction between steps is

less than 3*10�5 eV. The unit cell sizes of the flat GNRs are

varied until the size with lowest energy is found, to the preci-

sion of 3*10�4 eV. Twisted GNR structures are relaxed simi-

larly, using the unit cell size of the flat GNRs in the case of

unrelaxed unit cell, or optimized individually in the case of

relaxed unit cell.

FIG. 1. (Color online) The scaled band gap as a function of scaled twist

angle, for (a) unrelaxed unit cell size or (b) relaxed unit cell size, for N¼ 14,

17, 20 AGNRs.

a)Author to whom correspondence should be addressed. Electronic mail:

biy@rice.edu.
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The N¼ 3p � 1 is the narrow band gap case. It has been

shown that the band gap closes with twist.15 We consider

relaxed and unrelaxed unit cell size for N¼ 14, 17, and 20

(Ref. 16 only considers the case where the unit cell size is

fixed/unrelaxed). For unrelaxed unit cell size, the band gap

closing angle (per unit cell) scales as N�3/2. This is in agree-

ment with Ref. 16 estimate. The band gap of the flat ribbon

scales approximately as N�1. Fig. 1(a) shows the scaled band

gap Eg (eV) as a function of the scaled twist angle h
(degrees/unit cell) for all considered cases.

In the relaxed unit cell size case, the scaling is different.

We obtained N�1 scaling for the band gap closing angle. Fig.

1(b) illustrates the behavior of the band gap as a function of

the twist angle for all three widths considered.

For the N¼ 3p þ 1 family also, the band gap closes with

twist.16 For this family of AGNRs, for unrelaxed case, we

examined the band gap as a function of the twist angle for

N¼ 16, 19, 22, 25, 28, 31, and 34. The scaling of N�3/2 for

the band gap closing angle and N�1 for the flat ribbon band

gap applies here too. Fig. 2 shows the scaled band gap as a

function of the scaled twist angle for all considered cases.

For this family of AGNRs, for the relaxed unit cell size

case, the band gap decreases with twist but does not close at

even large twist angles (more than 15�/unit cell). At such

large twist angles, the C-C bonds at the edge of the ribbon

break. For this reason, we do not observe band gap closing.

Now, we turn our attention to energies of these struc-

tures. We calculated the strain energy per unit length (Es/L,

where L is the relaxed or unrelaxed unit cell length) as a

function of the twist angle per unit length (h/L). Fig. 3 shows

the plot. We obtain Es � h3.4 for N¼ 22. This is obviously

out of the linear elastic regime, for which we expect a �h4

relationship. Linear regime is defined by (h/L)*w� 1, where

w is the width of GNR. In this case, the linear regime crite-

rion is violated (for the smallest twist angle, we have

(h/L)*w¼ 0.32).

We also studied the band gap as a function of strain

energy. It turns out that the band gap change is proportional

to the strain energy. This is due to the fact that the bigger

band gap change, the bigger change in the energy levels, and

consequently, the total energy. The opposite is not necessar-

ily true (we can have zero band gap that does not change

with strain). Fig. 4 illustrates the results for N¼ 22 AGNR.

The plot shows a close to linear relationship between the

strain energy and band gap.

It should be mentioned that in the relaxed unit cell size

case, at some certain twist angle, the ribbon may go off-axis.

This is not the case when the unit cell size is fixed to the

FIG. 2. (Color online) The scaled band gap as a function of scaled twist

angle for unrelaxed unit cell size, for N¼ 16, 19, 22, 25, 28, 31, and 34

AGNRs.

FIG. 3. (Color online) Logarithm of

strain energy per unit length (Es/L) as a

function of logarithm of the twist angle

per unit length (h/L) for N¼ 22 AGNR.

The red/top (blue/bottom) plot/ribbons

correspond to unrelaxed (relaxed) unit

cell size. The grey/warped ribbon and its

energy (grey/diamond) shows the insta-

bility of the ribbon for relatively large

twists (see text). The slopes of the curves

give the Es � h3.4 power.

FIG. 4. (Color online) Band gap vs. strain energy for unrelaxed (red/

squares) and relaxed (blue/circles) N¼ 22 AGNR.
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value for the flat ribbon, because the tension keeps the ribbon

straight. Using helical symmetry, one can not detect such

instability, since each unit cell is a replica of the previous

unit cell with twist and translation along the axis. But since

we are interested in the band structure of the twisted ribbons,

we limit ourselves to helically symmetric regime and do not

consider such deformations. We note that for small twist

angles, such instability does not occur, and the critical twist

angle at which the ribbon bends off-axis is smaller for wider

ribbons.

Finally, we calculated conductance of flat and h ¼ 30�/
unit cell twisted N ¼ 7 AGNR around Fermi level, using

nonequilibrium Green function formulation.21 The results for

conductance and density of states (DOS) are shown in Fig. 5.

As mentioned before, for the twisted ribbon, traditional unit

cell can be quite large. Usually one uses the traditional unit

cells (translationally symmetric) as building blocks for the

principle layer for conductance calculations. A principle

layer consists of the minimum number of unit cells so that

each layer only interacts with the nearest neighboring layers.

Applying helical symmetry, we choose the principle layer

for conductance calculation to be much smaller than tradi-

tional unit cell (only 3 ribbon unit cells, where traditional

unit cell for h¼ 30�/unit cell consists of 12 ribbon cells, and

can be unlimitedly large for small twist angles). We have

verified that using this reduced unit cell as principle layer,

we obtain the same results for conductance as using tradi-

tional unit cell. The critical point is that the Hamiltonian and

overlap matrices should be invariant under the symmetry

transformation. This requires that the p orbitals (in a 4 or-

bital/carbon tight binding approximation) be rotated under a

helical symmetry transformation. For this reason, this does

not work in usual atomic based DFT basis, where the basis

does not rotate under helical transformation.

In conclusion, we studied the change in electronic struc-

ture of two families of AGNRs; N¼ 3p � 1 and N¼ 3p þ 1,

as a result of twist around the axis. The band gap closes at a

certain twist angle which scales as N�3/2 for unrelaxed and

as N�1 for relaxed unit cell size. This can be useful for

switches or sensors applications. We find a simple linear

relationship between band gap and strain energy. We also

investigated into the dependence of conductance and DOS

on energy of carriers with or without twist. We finally note

that temperature removes the effects of spin polarization in

ZGNR, rendering the tight binding approximation applica-

ble, which reveals no band gap sensitivity to torsion.
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FIG. 5. (Color online) Conductance (top) and density of states (bottom) of

flat (blue/dark) and twisted (red/light) ribbon around Fermi level. The steps

in conductance plot correspond to van Hove singularities of DOS.
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