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The energy of an arbitrary graphene edge, from armchair (A) to zigzag (Z) orientation, is derived in

analytical form. It contains a ‘‘chemical phase shift’’ determined by the chemical conditions at the edge.

Direct atomistic computations support the universal nature of the relationship, definitive for graphene

formation, and shapes of the voids or ribbons. It has further profound implications for nanotube chirality

selection and possibly control by chemical means, at the nucleation stage.
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An old view that carbons are awkward and intractable to
study [1] has changed with the discovery of fullerenes and
nanotubes [2]. Recently, isolated atomically thin graph-
ite—graphene—has ignited interest from both the funda-
mental physics aspect and for its possible applications
[3,4]. While the lattice of graphene is very strong, signifi-
cant variability at its edges [5,6] defines the electronic
properties [7,8] as well as the growth dynamics [9,10],
similar to the growth of its close sibling, the nanotube
[11–13]. Motivated by the challenge of possible selectivity,
here we derive the graphene edge energy �, from armchair
(A) to zigzag (Z) and all intermediate orientation chiral
angles �. Supported by the first-principles computations,
the essential dependence is always a sinusoid, �ð�Þ �
cosð�þ CÞ, but its ‘‘chemical phase shift’’ C varies with
the conditions. This determines the variation in the equi-
librium shape of graphene isles or ribbons. Moreover, it has
profound implications in the context of nanotube growth,
offering rational ways to control their chiral symmetry, a
tantalizing yet so far elusive goal.

Edge or surface energies both quantify the disruption
of interatomic bonds. If all dangling bonds were equal in
graphene, the edge energy proportional to their density
would be higher for the more tightly packed armchair
than for the less dense zigzag, by exactly a factor of

2=
ffiffiffi

3
p ¼ 1:15 [Figs. 1(a) and 1(b)]. However, this very

difference in spacing allows the armchair atoms A to
form triple bonds and thus lower their energy relative to
the zigzag Z: "A < "Z [11,14]. This delicate competition of
the energy per atom and their density makes the overall
energy balance nontrivial and sensitive to the chemical
conditions at the edge.

To derive an analytical expression for the edge energy,
we begin with a simple observation that any lattice cut
exposes two distinctly different types of atoms: either
having another edge-atom neighbor, as in a purely arm-
chair edge, or bonded to the 3-coordinated bulk-lattice
neighbors, as in a purely zigzag edge. In Figs. 1(a)–1(c),
the computed charge density maps, for pure A, pure Z, and
a generic chiral edge, show this distinction clearly and

support the energy-decomposition ansatz: An arbitrary
edge energy can be evaluated as ðCA"A þ CZ"ZÞ by count-
ing the edge carbon atoms.
With a basis in a honeycomb lattice, an arbitrary edge

direction can be specified by two components ðn;mÞ or by

FIG. 1 (color online). Different atomic spacing along the
armchair (a) and zigzag (b) edges results in distinctly different
electron density distribution, with armchair edge atoms forming
shorter and stronger triple bonds. This distinction between the
two types of atoms is preserved in a mixed chiral edge (c), as the
computed electron density illustrates (from blue for zero up to
red for the highest value). Schematics of the edge (d) along the
ðn;mÞ direction assists the atom counting: 2m A atoms (count
along the red line at 30�) and ðn�mÞ Z atoms (count along the
horizontal black line segment). Dividing these numbers by the
length ðn2 þ nmþm2Þ1=2 of the edge (the diagonal on the left)
yields the necessary densities cA and cZ; in this example of the
ð8; 3Þ edge, there are 6 of the A atoms and 5 of the Z atoms.
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the angle between the edge line and the zigzag atomic
motif, � (to keep with tradition of the chiral angle for
nanotubes [2,15]). Inspection of Fig. 1(d) then reveals
2m of A atoms and ðn�mÞ of Z atoms, over the edge

span of ðn2 þ nmþm2Þ1=2, henceforth using the lattice

parameter l ¼ 2:46 �A as a unit. An elementary law
of sines, applied to the triangles in Fig. 1(d), yields

cA ¼ ð4= ffiffiffi

3
p Þ sinð�Þ for A-type, cZ ¼ 2 sinð30� � �Þ for

Z-type, and c ¼ ð2= ffiffiffi

3
p Þ cosð30� � �Þ for the total edge-

atom densities [16]. Adding these, with the appropriate
weights "0A and "0Z, one obtains the edge energy as

½ð4= ffiffiffi

3
p Þ"0A sinð�Þ þ 2"0Z sinð30� � �Þ� per unit length, or

�0ð�Þ ¼ 2�0
A sinð�Þ þ 2�0

Z sinð30� � �Þ
¼ j�0j cosð�þ C0Þ: (1)

The last identity makes it clear that the energy must
universally depend on the edge direction as sinusoid,
with the phase-shift constant determined by the basic

edges only: C0 ¼ arctanð ffiffiffi

3
p � 2�0

A=�
0
ZÞ � 1:2�. (A prime

designates the values for a pristine edge: �0
A � 1:01 and

�0
Z � 1:18 eV= �A.)
Upon arriving at such a simple relationship, one is

compelled to compare it with direct computations.
Before turning to this, we note that the junctions between
the A and Z domains along an arbitrary cut may add an
AZ-mix energy correction �; proportional to the occur-
rence of A=Z junctions, it is evaluated as � � 4 sinð�Þ�
sinð30� � �Þ= cosð30� þ �Þ and vanishes at � ¼ 0 or� ¼
30�, as expected for basic edges. Energy can be computed
at different levels of theory [16], all to be compared with
Eq. (1), whose derivation is not based on any particular
model Hamiltonian. Figure 2 shows the energies for A, Z,
and a few chiral edges (analogs of the low-index and the
vicinal planes in crystals) computed directly with classical
forces or with density functional approximations. The data
of all four methods follow the theoretical curves very
closely, with small and always-negative AZ-mix correc-

tions in the range of 10 meV= �A. Moreover, a few inde-
pendent calculations also fit well [17–19].

The logic above remains unchanged if the edge is termi-
nated by another element, but the energy definition must be
augmented by subtracting the cost �N of the terminating
atoms borrowed from a reservoir of chemical potential �.
If the edge is attached to a cluster of fixed size N, this
constant term is of no particular interest. Often, however,
the terminating groups are docked to the edge atoms in
one-to-one correspondence, and thus the ��c term de-
pends explicitly on the chiral angle. The interface energy
takes the form ðcA"A þ cZ"ZÞ ��c (the prime sign in the
notation is now omitted, for the edge terminated by other
elements), and

�ð�Þ ¼ ð ffiffiffi

3
p

�A � 2�ZÞ sinð�� 30�Þ þ ð�A � 2�=
ffiffiffi

3
p Þ

� cosð�� 30�Þ ¼ j�j cosð�þ CÞ: (2)

In the latter, the amplitude j�j and phase shift are fully
defined by the values for basic A and Z edges and the
chemical potential � of the terminating reactant. This
analytical result can again be validated by comparison
with direct ab initio computations. Figure 2 shows good
agreement (AZ-mix correction stays in the range of nega-

tive 10 meV= �A). More importantly, it reveals that the
different chemistry of termination (the element x ¼ H or
Ni and its chosen chemical potential �) does change the
phase shift C, as Eq. (2) predicts.
An analytical result (2) is compact yet general. It allows

one to quickly evaluate the energy for arbitrary orientation
� (especially if � matches no rational m=n, yielding
aperiodic, computationally unaffordable structures).
Deriving the equilibrium shape throughWulff construction
from �ð�Þ becomes a trivial exercise [20]. The essential
physics of the edge energy is all wrapped into a single
parameter C: This ‘‘chemical phase’’ tells whether A, Z,
or some intermediate edge has lowest or highest energy
and defines their ratio �A=�Z ¼ cosðCþ 30�Þ= cosðCÞ.
Another important characteristic is the derivative
@�ð�Þ=@� at the ends of the interval 0<�< 30�, which
allows one to calculate the energy of a single kink at either

the zigzag, "kinkZ ¼ ð ffiffiffi

3
p

=2Þ@�=@�j�¼0 �
ffiffiffi

3
p

�A � 3
2�Z�

1
2�, or the armchair edge, "kinkA ¼ � 1

2@�=@�j�¼30� �
�ð ffiffiffi

3
p

=2Þ�A þ �Z. These simple relationships are

FIG. 2 (color online). Edge energy �ð�Þ=l as a function of
chiral angle. The values are computed directly (dots) and ob-
tained from Eq. (2) (lines). A pristine edge (black) is computed
with four different levels of atomistic theory, as labeled: general
gradient approximation (GGA, most realistic among the four,
thick line) and the local density approximation (LDA) of density
functional theory, as well as classical force fields REBO (reac-
tive empirical bond order) and AIREBO (adaptive intermolecu-
lar reactive empirical bond order). Dark blue: The H-terminated
edge data, with H taken either from an isolated atom state or
from a H2 molecule, to sample different chemical potential
values. Light blue: Edge terminated by the Ni atom row, either
from an isolated atom or from the bulk. Also in light blue is
shown termination by a two-dimensional Ni atomic layer.
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significant in reducing the great computational cost of
low-symmetry kink structures to small-unit A or Z edges
[21–23]. Kink energies are crucial in defining the row-
by-row growth of graphene or nanotubes [12]; they also
define the edge stability: The rise of the �ð�Þ curve at
either end of chirality range 0<�< 30� ensures positive
kink energy, which prevents a basic edge from transform-
ing into a vicinal. Beyond the specific useful corollaries
of Eq. (2), its main benefit is better seen in a big picture,
resembling the ‘‘extended zone scheme’’ in solid state
physics.

To this end, Fig. 3(a) shows the normalized edge energy
�ð�Þ=j�j as a function of its extended argument ð�þ CÞ,
where � is a geometrical angle while C is the chemical
phase (determined by the chemical type of terminating
element x and its chemical potential �). For each given
case, only the �A and �Z for basic edges need to be directly
computed; then with the proper choice of � (e.g., � ¼ 0
for the isolated atom state, or the negative of cohesive
energy for a bulk metal, etc.), the chemical phase shift is

C ¼ arctan½ð ffiffiffi

3
p � 2�A=�Z þ�=

ffiffiffi

3
p

�ZÞ=ð1��=
ffiffiffi

3
p

�ZÞ�.
In this summary plot we omit for clarity the comparison
details of Fig. 2 but extend the number of examples:
pristine edges (four methods), terminated by an atom row
(x ¼ H; F;Co;Cu; Fe;Ni) or a 2D monolayer of Ni. We
first note the variability between the terminating elements,
when the A edge is preferred for some, while the Z edge
has lower energy with the others. We also note how, even
for a given element, the change of its source (feedstock)
chemical potential alters the phase C in a broad range.
Interestingly, all termination types divide formally into two

families, marked by different colors: If
ffiffiffi

3
p

�A < 2�Z, then
the phase C varies from �30� up to 150� (blue), while if
ffiffiffi

3
p

�A > 2�Z, then the phase C varies from �30� down to
�210� (red), upon the increase of chemical potential �.
Accordingly, the 30�-wide chirality window (light blue)
slides along the sinusoid, defining the edge energy
behavior.
The above analysis gives the energies of graphene edges,

from A to Z, through all intermediate chiral directions. It
shows how the preferred orientation depends on termina-
tion and how it can—at least in principle—be broadly
controlled by the chemical potential of the terminating
species. Equation (2) makes predicting the equilibrium
shapes of graphene islets straightforward. Dependence on
termination conditions suggests a variety of ways to con-
trol the shape of graphene during its growth [9,10]. This
does not change the graphene ‘‘body’’ yet is important for
the edge properties.
It cannot escape one’s notice that the very same analysis

has profound implications for nanotubes, where the origin
of chirality and possibility of its control remain elusive in
spite of its tremendous importance. The tube chirality is set
at the nucleation stage, when a complete cap (hemifuller-
ene made up of hexagons and a required sextet of isolated
pentagons) emerges from carbon atoms fluctuating on a
catalyst [11,24]. The probability of fluctuations is con-
trolled by the energy, which includes the catalyst,
sp2-carbon cap, and their contact along the circular edge
[Figs. 3(b)–3(d), insets]. Among these contributions, only
the latter depends on the edge type, determined by the
angle �—also the chiral angle of the commencing tube.
Therefore, the probability of different chiral types is de-
fined by the edge energy �d�ð�Þ. Since the diameter d is
constrained by the size fit with the catalyst particle, the cap
curvature energy varies little [24,25], leaving the chiral

FIG. 3 (color online). (a) The thick sinusoid is the normalized
energy �ð�Þ=j�j versus the extended argument �þ C [right-
hand side of Eq. (2)]. The thin segments each represent a 30�
range of chiral angle � for each specific case of edge termina-
tion, with accordingly computed chemical phase shifts C. The
segments are labeled in the order of vertical positions, spaced to
avoid overlap, for clarity. Change of the chemical potential �
can move the blue (red) segments within the blue (red) section of
the sinusoid; Cu with a middle � value is shown as an example.
A chiral-angle window (light blue, here placed at the pristine
graphene area) slides left or right according to the chemical
conditions at the edge. (b)–(d) For nanotubes, the probabilities
of nucleation outcome are calculated versus their edge chirality,
as determined by the energy of fluctuations. The preferred
chirality depends on the chemical phase C: At the left domain,
a chiral tube could emerge (b); in the middle, the zigzag
has lowest energy (c); and on the right, the armchair is most
probable (d).
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angle as the essential variable defining the probability:

Pð�Þ � e��d�ð�Þ=kbT . We see that the preferred tube chi-
rality is defined by the function in Eq. (2). A number of
observations follow. First, a strong energy bias in the
case of a bare edge could be good for strict chirality choice,
but the high energies in this case destabilize an open tube
and disable its growth without a catalyst being attached, as
is well known [26]. Attachment of foreign species miti-
gates the energy differences among chiralities, reducing
j"A � "Zj to a seemingly negligible several meV. The
factor �d� 30, however, brings the total edge energy
variation back to values >kbT and therefore sufficient
to discriminate among the chiral types. As Fig. 3 shows,
chirality selection is fully determined by the phase C,
depending in turn on the chemistry of species docked to
the tube edge. Figure 3 not only suggests the ways of broad
variability of chiral bias, it also reveals potential difficul-
ties due to the sheer mathematical form of cosine. It is easy
to imagine a swap from A to Z preference by shifting the
chirality window from the downhill to the uphill side of the
sinusoid [from Fig. 3(d) to Fig. 3(c)]. It appears challeng-
ing, though, to tune the energy minimum to the middle of
the 30� window, to a chiral type [Fig. 3(b)]: Needed for
this, a convex �ð�Þ is available only if �210� <C<
�180�, in the domain of negative interface energies, where
the growth is unlikely. We refrain from saying it is impos-
sible, but it may require special quasiequilibrium condi-
tions, to favor a chiral tube edge yet not to cause its
dissolution. It should also be noted that control by chemi-
cal potential � is irrelevant if the catalyst is a fixed-size
monoelemental, as ��N remains constant independent
of �. On the other hand, this tuning knob can be fully
utilized if the number of terminating atoms directly corre-
lates with the number of edge atoms, which can be the
case for binary compositions [27,28] with different affinity
of the components to carbon. Recent experiments [29]
corroborate this as a promising path.

A number of details can be added to the above theory,
especially how the graphene is docked to a bulk substrate
or how a cylindrical tube matches the catalyst particle,
which imposes its own crystallinity and possibly facets.
This complicates the analyses but can also reveal more
ways for chirality control through the carbon-catalyst inter-
face energetics [30]. We realize the limitations of the
present work but believe it does capture and quantify the
principal factors. With more evidence and supporting argu-
ments, this approach can offer a road map for graphene
edge design and especially rational chirality control in
nanotube production.
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