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In this article, we present a comprehensive characterization of three carbon nanomaterials of technological
interest: graphene, graphane, and fluorinated graphene. By means of first principles and tight-binding
calculations in combination with analytical methods, we carried out detailed comparative studies of their
structural, mechanical, thermal, and electronic properties. The calculated elastic properties of these materials
confirm their high mechanical stability and stiffness, which in association with their low dimensionality,
translates into a large ballistic thermal conductance. Furthermore, we show that while graphene is a zero gap
semi-metal, graphane and fluorinated graphene are wide gap semiconductors. Finally, we discuss designed
interfaces between these systems, and show that their physical properties have potential applications in
nanoelectronic devices.
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1. Introduction

In the recent studies of hydrogen storage, a catalytic process called
spillover has emerged as one of the promising methods (see [1,2] and
references therein). Through our modeling of the spillover onto
graphitic substrate-receptors, we came to realize that hydrogenation
must proceed as a new phase nucleation [2], in order to make the
process thermodynamically feasible. Indeed,while an individualHbinds
to the sp2-carbon rather weakly (below its binding within molecular
H2), an island of tens of H-atoms densely covering the graphene-
receptor on both sides appears more favorable than the molecular gas
phase, at nearly ambient conditions. Such CH-islands of previously
predicted graphane [3] should form sharp interfaces with the initially
pristine graphene [1,2,4]. Combining these two distinctly different
materials within the same two-dimensional layout [4,5] offers interest-
ing opportunities for nanoengineering andpossibly device functionality.

Graphene, a two-dimensional array of carbon atoms in a
honeycomb lattice, can be considered as a single monolayer of
graphite. It was synthesized by mechanical exfoliation of graphite for
the first time in 2004 [6,7]. Its singular electronic spectrum, which
displays a linear dispersion near the Fermi point, has been the recent
focus of attention for many theoretical and experimental studies,
particularly as a solid-state model for Dirac's equation [8]. In addition,
being a quasi-two-dimensional object, graphene exhibits a nearly
ballistic mechanism for charge and energy transport at the nanometer
scale. Mechanical properties of graphene are also remarkable, with
the largest Young modulus experimentally measured for any material
[9]. Possessing a carbon framework similar to graphene, graphane is
an extended two-dimensional and covalently bonded hydrocarbon
[3]. Hydrogenation in graphane induces a change in carbon hybrid-
ization from sp2 to sp3, thus leading to a non-planar structure [3].
Therefore, graphane may be considered as a slab of diamond reduced
to its ultimately thin monoatomic version. This similarity to diamond
makes it understandable that the hydrogenation also changes the
electronic band structure in graphane with respect to graphene, the
former being a wide gap semiconductor [3]. Interestingly, before
graphane was theoretically postulated as a stable material, graphite
derived carbon structures by fluorination were discovered experi-
mentally [10–12]. Of particular interest in this context is fluorinated
graphene, structurally similar to graphane.

In this article, we present theoretical estimations for the physical
properties of graphene, graphane, and fluorinated graphene. By means
of ab initio calculations and analytical methods, we will compare
mechanical, thermal, and electronic properties of these carbon
nanomaterials. In addition, wewill discuss designed interfaces between
these systems, and their potential applications [4] in nanodevices.

2. Structural stability and nanomechanics

First, we present ab initio calculations for the structures and
mechanical properties of graphene, graphane, and fluorinated
graphene. Following the approach in Refs. [13,14], we approximate
the mechanical response of these two-dimensional atomic lattices by
an isotropic, continuum elastic shell model. This simplification is well
justified for the hexagonal graphene lattice, which possesses isotropic
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Fig. 1. Calculated elastic energies as a function of the lattice parameter. The values are
reported on a per unit cell basis (stoichiometries: graphene C, graphane CH, and
fluorinated graphene CF), and measured with respect to the equilibrium configuration.
Also shown are quadratic fits for the three materials.

Fig. 2. Calculated elastic energies as a function of the curvature, for tubes of different
radii. The values are reported on a per carbon atom basis, and measured with respect to
the flat geometry. Also shown are quadratic fits for the three materials.
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elastic properties [14,15]. The assumption of isotropy in non-planar
lattices such as graphane and fluorinated graphene, where the
symmetry group is reduced from D6 h to P ̅3m1 (in chair configura-
tion), cannot be rigorously justified from an atomistic point of view,
but will be still taken as a reasonable approximation at a mesoscopic
scale. We calculate the in-plane rigidity C, defined as the elastic
energy required to stretch a single sheet of material, by fitting a
parabola to the energy per carbon atom U = ð1= 2ÞC̃�2. Here,
� = ðd−d0Þ= d0 is the strain normalized with respect to the
equilibrium lattice parameter. The in-plane rigidity is obtained from
the coefficient in the fit by C = C̃ = d20. The total energies are
calculated using density functional theory with plane-wave basis set
and projected augmentedwave type pseudopotential as implemented
in VASP [16–20]. The exchange and correlation part of the energy are
approximated by PBE functional [21]. The calculated energy per unit
cell, as a function of the lattice parameter, is shown in Fig. 1 for
graphene, graphane, and fluorinated graphene, respectively. The
equilibrium lattice parameters, 2.8% greater for graphane (CH) and
almost 5% greater for fluorinated graphene (CF) (both relative to
graphene) indicate significant mismatch for possible interfaces of
interest, discussed later in the paper. The resulting ±1.5% strain may
also cause rumpling of graphane at the intermediate stages of its
formation. The in-plane stiffness obtained from these calculations for
the three materials is shown in Table 1.

We also estimated the bending stiffness of graphene, graphane,
and fluorinated graphene, by defining the elastic energy due to
curvature as U = ð1= 2ÞD̃ = R2. The bending stiffness D is obtained
from the coefficient in the parabolic fit through the relationD = D̃= A,
where A =

ffiffiffi
3

p
d20 = 4 is the area per carbon atom in a hexagonal array,

and d0 is the equilibrium lattice constant as given in Table 1. For that
purpose, we obtained the total energy per carbon atom of pristine,
hydrogenated, and fluorinated nanotubes of different radii. We used a
density functional based tight-binding method, implemented in the
DFTB+ code [22,23]. As shown in Fig. 2, the energy approximately
follows a parabola as a function of curvature 1/R. Hydrogenated tubes,
corresponding to curved graphane, show a positive deviation from the
Table 1
Calculated mechanical properties of graphene, graphane and fluorinated graphene.

Material d0 (Å) ρs (mg/m2) C (N/m) D (eV) h (Å) Y (Pa)

Graphene 2.47 0.755 352.54 1.48 0.85 4.63E+12
Graphane 2.54 0.773 244.95 2.18 1.32 1.84E+12
F-graphene 2.61 1.746 227.80 6.34 2.29 1.01E+12
parabolic relation at small radii. This feature can be explained to be a
consequence of steric effects associated to the close proximity
between hydrogen groups in the lumen of very small tubes, which
induces an effective repulsive interaction. A deviation on the opposite
sense is observed in fluorinated graphene, since in small tubes
internal fluorinated groups attract each other. This tendency is
observed also in linear fluorinated hydrocarbons, and is usually called
the Gauche effect in this context [24].

From the calculations of the well defined in-plane and bending
stiffness, one can estimate two properties which have no direct
definition at the nearly two-dimensional atomistic level: the effective
thickness h of the sheet, and the Young modulus Y. In agreement with
Ref. [13], we define these properties by means of the expressions from
an equivalent continuum elastic shell model, D=Yh3/12(1−ν2), and
C=Yh. By combining these two relations, we obtain an unambiguous
definition of Y and h. The relaxed structures of CH and CF nanotubes
are shown in Fig. 3. A summary of the calculated properties for all
three materials is presented in Table 1. According to these results,
graphene is the most rigid among the three materials upon stretching,
but the most compliant upon bending. In graphane and fluorinated
graphene, the sp3 carbon hybridization induces non-planar structures.
This effect, in combination with interactions between the surface CF
or CH groups, translates into a higher bending stiffness and a larger
effective thickness.

3. Ballistic thermal conductance

The characterization of basic elastic parameters above, such as in-
plane rigidity and bending stiffness, allows one to estimate general
features of the vibrational dynamics as well: frequencies, speed of
sound and phonon density of states. At reasonably low temperatures,
the phonon spectrum is dominated by long wavelength acoustic
modes, which can be described from a continuum shell model. A
particularly relevant application of this analysis is the estimation of
thermal transport properties in nanostructures. Since graphite, a
crystalline form of carbon, exhibits a high thermal conductivity at
room temperature (∼2000 W/m/K), it is believed that low-dimen-
sional forms of this material, such as carbon nanotubes and graphene
sheets, may share or even exceed this value. Molecular dynamics
(MD) simulations [25] once suggested that thermal conductivity in
carbon nanotubes may be as high as 6000 W/m/K. Other MD results
reported thermal conductivities of about 2000 W/m/K for carbon
nanotubes [26], and even higher values for single-layer graphene [26].
Recently, experimental measurements were reported [27] on



Fig. 3. Relaxed structures for fluorinated graphene (left) and graphane (right) tubes. A single unit cell is displayed, for armchair edges (n,n) with n=10 and n=5, respectively.
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graphene sheets of ∼10 μm length, with thermal conductivities in the
range of 3080–5150 W/m/K at room temperature. These extremely
high values can be explained by the large phonon mean free path in
nanostructures such as carbon nanotubes [28] and graphene sheets
[27], which can typically exceed 500 nm. Therefore, it is theoretically
expected that thermal conductivity at the nanoscale is dominated by a
ballistic mechanism. Based on phonon spectra obtained from an
atomistic description of graphene, independent estimations for the
ballistic thermal conductance of a single graphene layer have been
reported in the literature [29,30]. In particular, a low-temperature
dependence ∼T1.5 was obtained for an infinite graphene sheet [29,30].

Recently, we obtained an analytical expression to calculate the
ballistic thermal conductance per unit width of thin ribbons [31]. In
our theory, we approximate the phonon spectra of the graphene sheet
by using a model from continuum elasticity [31]. Let us consider an
elastic ribbon with a finite width w, and assume the length L→∞. In
this situation, points in the reciprocal space are discrete in the
transverse direction-y, but constitute a quasi-continuum in the
longitudinal direction-x. We thus have

→
k = ðkx; 2πny = LÞ, with

integers—(Ny−1)/2≤ny≤(Ny−1)/2. Here, Ny represents the total
number of modes to be included in correspondence with the total
number of unit cells in the y-direction, for an equivalent atomic lattice
system. The vibration frequencies for a thin ribbon with finite width
w, and infinite length L→∞ are given by [31]:

Bending : ωb = cb j→k j2; LA: ωLA = cLA j→k j ; TA
: ωTA = cTA j→k j ; Torsion: ωτ = cτkx: ð1Þ

Here, we have defined the coefficients cb =
ffiffiffiffiffiffiffiffiffiffiffiffi
D= ρs

p
, cLA =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C = ρsð1−ν2Þ
p

, cTA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C = 2ρsð1 + νÞp

, and cτ = ð1=wÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1−νÞD = ρs

p

[31]. Due to the quadratic dispersion of the bending mode, the
coefficient cb does not possess dimensions of velocity, in contrast with
the remaining ones representing the speed of sound in the LA, TA, and
torsion modes, respectively. The speed of sound in the torsion mode
vanishes in the limit of a very wide ribbon, cτ ∼ 1/w. The continuum
elasticity parameters in this mechanical model are the in-plane
rigidity C, the flexural rigidity D, the Poisson ratio ν, and the surface
mass density ρs = mN = ðLwÞ, as defined in the previous section. To
apply our analytical equations for graphene, graphane, and fluorinat-
ed graphene, we will use the set of continuum elastic parameters
obtained from our calculations as shown in Table 1.

In the spirit of Debye model, we introduce a cutoff in the x-wave
number jkx j≤kc, in order to satisfy the correct number of degrees of
freedom 3N−6∼3N, kc = πn1 = 2

s [31]. Here, ns = N = ðwLÞ is the
surface number density.
With these considerations, an analytical expression for the ballistic
thermal conductance of a nano-ribbon is [31]:

σ = k2BT = h
� �

∑
j=b;LA;TA;τ

f2 θj = T
� �

+ 2 k2BT = h
� �

∑
Ny−1ð Þ=2
ny =1 f ∑

j=LA;TA ½ f2ðθj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4n2

y =N
2
y

q
= TÞ

−f2 θj2ny = NyT
� �� �� + f2 θb 1 + 4n2

y =N
2
y

h i
= T

� �
−f2 4θbn

2
y = N2

yT
� �� �g: ð2Þ

This constitutes the main result of our analysis, where the function

f2ðyÞ = ∫
y

0

dxx2ex = ðex−1Þ2 and the characteristic temperatures for

each mode are: θb = ħc1k2c = kB, and θj = ħcjkc = kB for j=LA, TA, τ.
In the low-temperature limit, we obtain from Eq. (2): σ = 4 ×

π2k2BT = ð3hÞ + O α=Tð Þ2e−α=T
� �

, with α=min{θj} [31]. Therefore, at

very low temperatures, the finite width graphene ribbon behaves as
4-channel thermal quantum wire with a thermal conductance ∼T.
Notice that this is a universal, material independent limit. We remark
the correspondence of this result with the low-temperature limit of
the thermal conductance of a carbon nanotube [29].

In the high temperature limit, the ballistic thermal conductance
depends on material specific properties through a phase-space
average speed of sound c̄ [31]:

σ =w = ð3 = 2ÞkBnsc + Oðw−2Þ: ð3Þ

If the width of the plate is very large w→∞, we notice that
cτ∼1=w→0 and hence the torsion mode disappears. In this limit, we
show that the thermal conductance is dominated by the bending
mode at low temperatures [31],

σ =w = 0:2259k5 = 2
B = ðc1 = 2

b ħ3=2ÞT3=2
: ð4Þ

At intermediate temperatures, the in-plane LA and TA modes
introduce a ∼T2 contribution to the lattice thermal conductance. In
Fig. 4, we show the thermal conductance per unit cross section of the
ribbon, for different widths w, calculated from Eq. (2). We chose
parameters corresponding to graphene, graphane and fluorinated
graphene, respectively. As observed from Eq. (4), and in contrast with
the narrow ribbon case, the infinite sheet low-temperature limit
depends on material specific parameters through the bending mode
coefficient cb =

ffiffiffiffiffiffiffiffiffiffiffiffi
D= ρs

p
.

4. Electronic structure

In this section, we turn to comparative analysis of the electronic
spectra of graphene, graphane, andfluorinatedgraphene. Fig. 5 shows the
calculated electronic band structures of a) graphene (C), b) graphane



Fig. 4. Ballistic thermal conductance per unit cross section, calculated after our
analytical expression (Eq. (2)), for the three different materials, graphene, graphane
and fluorinated graphene (CF). We compared ribbons (w∼4 nm) and sheets (w→∞),
which clearly display a distinct low-temperature dependence, in agreement with our
analysis. In the inset we show a magnified view of the high temperature region.
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(CH) and c)fluorinatedgraphene (CF).We see that carbonhydrogenation
or fluorination opens a finite band gap, transforming the system into a
semiconductor quite similar to sp3 diamond. This is in contrast with
graphene (Fig. 5(a)), which has a metallic behavior at a single point in
reciprocal space, the K-point, were the conduction and valence bands π,
π* inherited from the basic bonding and antibonding states in benzene
touch. Analytical tight-binding calculations show that the dispersion for
these two bands is given by the expression [32]

E�ðkL; kwÞ≈� t 1 + 4cos
ffiffiffi
3

p
kLa=2

� �
cosðkwa=2Þ + 4cos2 kLa=2ð Þ

n o1=2
:

Expansion of this energy dispersion in the vicinity of the K-
point

→
kF = ð2π= ða

ffiffiffi
3

p
Þ;2π = ð3aÞÞ leads to a linear dispersion

E�∼� ħvF j→k−→
kF j , with vF=106 m/s. In this regime, charge carriers

can be formally pictured as massless Dirac quasi-particles in the
effective Hamiltonian approximation. On the other hand, as observed
in Fig. 5(b), the electronic spectra of graphane (CH) and fluorinated
graphene (CF) show a gap. This transition from metal to wide gap
semiconductor induced by carbon hydrogenation or fluorination
opens a variety of potential scenarios for applications. For example,
the gap size can be tuned depending on the total concentration and
spatial distribution of hydrogenated sites. Examples of this are
graphene nanoroads (GNRs) [4] and quantum dots (QDs) [5], which
are narrow stripes, and nanometer scale islands, respectively, of
graphene carved in a hydrogenated graphane matrix. Similar
structures can be conceived in a fluorinated matrix as well.
Fig. 5. The calculated band structures of: a) graphene (C), b) graphane (CH) and c) fluorinated
graphene, respectively, open a band gap at the metallic K-points in graphene. The direct gaps
5. Interfacial designs: Nanoroads, GNR′

The design of nanodevices requires control over interfacial
properties between different nanomaterials, and moreover, some of
the physical principles of action of these devices may depend on these
properties. Of particular interest in this context are recently
synthesized graphene nanoribbons (GNR) [33–36], obtained by
cutting graphene sheets and passivating the edge carbon atoms
(e.g., by hydrogens). In GNRs it is possible to tune the electronic
properties, by controlling the width and orientation of the edges, thus
obtaining semiconducting or metallic structures [37–39]. In particu-
lar, zigzag GNRs present magnetic properties [40–43], and in the
presence of an external electric field become half metallic [39,43],
whichmakes them potential candidates for spintronic devices. Recent
investigation [2,3] suggests that hydrogenation of graphene can be
utilized to form geometrical areas of pristine graphene with the
desired electronic properties embedded in fully hydrogenated phase,
without the need for cutting [35,44]. This alternative is supported by
two important features: i) A fully hydrogenated graphene is a wide
gap semiconductor, and ii) it should form very sharp interfaces [2]
with the pristine graphene in the same plane. A similar effect should
be expected from fluorination.

By means of ab initio calculations, we explored the possibility of
patterning the pristine graphene nanoroads (GNR′, “primed” to
distinguish from similar acronym for the graphene nanoribbons
GNR) via selective hydrogenation or fluorination of the graphene
sheets, as depicted in Fig. 6. We show that the electronic properties of
the GNRs depend sensitively upon their orientations and widths,
offering the possibility of tuning for a variety of device applications.

Graphene nanoroads can be classified into armchair (AGNRs) and
zigzag (ZGNRs) depending upon their number of pristine dimer lines
and zigzag chains Na and Nz, respectively, Fig. 6. Hydrogenation on
both sides of a graphene sheet leads to the lowest energy structure,
which corresponds to graphane. Adsorption of the first hydrogen
breaks the pairing of π-electrons between two subgroups of starred
and un-starred carbon atoms, leaving the system with an unpaired π-
electron [45]. The radical is further removed by addition of a second
hydrogen to the carbon atom from the other subgroup, thus lowering
the energy. In addition, the change in carbon hybridization from sp2 to
sp3 leads to buckling of hydrogenated carbon, and the induced strains
on adjacent carbon atoms compensate each other, thus reducing the
energy. A hydrogenated phase [2] with stoichiometry CH is energet-
ically most favorable, with the distinct boundary-interface separating
it from the pristine graphene area.

The relaxed geometry, studied by means of density functional
theory based pseudopotential plane-wave method as implemented in
VASP [16,46], differs for the two types of GNRs. The relaxed AGNRs are
completely flat, Fig. 6, since alternate C atoms bonded to hydrogen
move out of the plane in opposite directions along the orientation of
AGNRs. On the other hand, in ZGNRs each half of the hydrogenated
graphene (CF). Notice that hydrogenation and fluorination in graphane and fluorinated
at Γ-point are 3.48 eV and 3.12 eV for graphane and fluorinated graphene, respectively.



Fig. 6. Relaxed structure of zigzag (left) and armchair (right) nanoroads. The blue spheres represent Hydrogen or Fluorine. The width is measured by the number of pristine sp2-carbon
dimer-lines (Na) or zigzag chains (Nz), respectively.

Fig. 7. The band-gap variation for nanoroads as a function of the width Na. We compare
hydrogenated AGNRs (red squares) vs fluorinated ACFNRs (open circles).
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zigzag rings moves alternately in and out of the plane, introducing an
overall tilt, Fig. 6. With the increasing width of the ZGNRs, the tilt
becomes more localized at the interface and part of the road away
from the interface remains flat. We observed that the tilt has a very
little effect on electronic andmagnetic properties [4]. Placing such 2D-
structure on a substrate, with ever-present van der Waals attraction,
should further flatten the interfacial areas. Generally, the mismatch
strain along with the tilt, chemically-induced by either H or F, or
oxygen groups, causes rumpling and possibly delamination of carbon-
sheet from the substrates (see Fig. 1 in Ref. [44]).

We studied the electronic band structure of GNRs. The AGNRs are
semiconductors, anddue toquantumconfinement thebandgap increases
when reducing theirwidth, thusoffering thepossibilityof tuning theband
gap. Like in nanotubes andnanoribbons, the gap here becomes very small
for Na=3p+2. The variation in band gap is not monotonous and can be
subdivided into three families as shown in Fig. 7. The band gaps in the
Fig. 8. The band structure for fluorinated nanoro
three families follow hierarchy Δ3p+2<Δ3p+1<Δ3p (except for the
Na=3and4). A similar, non-monotonic trend is observed in thebandgap
of armchair fluorinated graphene nanoroads (ACFNRs), after calculations
shown in Fig. 7. For example, the band structures from these three
families for fluorinated graphene are shown in Fig. 8, essentially
corroborating the trends observed in Fig. 7.

6. Conclusion

In summary, by combining first principles and tight-binding
calculations with analytical methods, we presented a comprehensive
characterization of three carbon nanomaterials of technological
interest: graphene, graphane, and fluorinated graphene. We analyzed
structural and elastic properties, confirming the high mechanical
stability and in-plane stiffness of these materials. In particular, after
our calculations we concluded that graphene is the most rigid among
the three materials upon stretching, but the most compliant upon
bending [47]. In graphane and fluorinated graphene, the sp3 carbon
hybridization induces non-planar structures. This effect, in combina-
tion with interactions between the surface CF or CH groups, translates
into a higher bending stiffness and a larger effective thickness as
compared with graphene. We further used our estimations of elastic
parameters in an analytical model for the ballistic thermal conduc-
tance of nanoribbons, which generically represents all threematerials.
At low temperatures, we show a power law behavior for the thermal
conductance per unit width, with an exponent β depending on the
width of the ribbon. In the limit of a narrow ribbon, β=1.We showed
that in this regime, the ribbon carries exactly four quanta of thermal
conductance, independent of material specific parameters. As the
width of the ribbon increases, we observe a transition in the exponent
towards β=1.5 in the limit of an infinite two-dimensional sheet. In
this second case, we show that the contribution from the torsion
mode disappears, and heat transport at low temperatures is
dominated by the bending mode, with material specific parameters.
We also performed electronic structure calculations, confirming that
graphene is a semi-metal. We also showed that carbon hydrogenation
and fluorination opens a band gap, and in consequence graphane and
fluorinated graphene are wide gap semiconductors. Finally, we
ads, at different widths Na=10, 11 and 12.
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studied designed interfaces between thesematerials, and showed that
conducting and semiconducting nanoroads can in principle be
patterned on a graphene sheet by hydrogenation or fluorination.
This feature, combined with the possibility of controlling band gap
through geometry and orientation of the pattern, represents a
promising technology for future device implementation.
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