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Energy decomposition analysis of metal silicide nanowires from first principles
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We investigate the structure, stability, and electronic properties of yttrium silicide nanowires with AlB,-type
structure, using ab initio calculations. The results confirm experimental findings that yttrium silicide nanowires
are robust and conductive. In particular, the dependencies on nanowire thickness are analyzed. Furthermore,
calculations show that the vacancy formation in stoichiometric nanowires is energetically favorable. The total
energy of the nanowires is decomposed into the bulk, surface, and edge contributions. An equation is proposed
for the cohesive energy E.(n,m) of an arbitrary wire as a function of its cross-section dimensions n and m,
which can be further reduced to the nearly linear relationship between the cohesive energy and composition. A
comparison with recent epitaxial growth experiments is given.
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I. INTRODUCTION

Metal silicide nanowires (MSNWs) are of interest as po-
tential building blocks for nanoelectronics since their mor-
phology, size, and electronic properties make them suitable
for fabricating low-resistance interconnects,’ components for
molecular electronics,? and nanoscale devices. Their practi-
cal synthesis through the epitaxial growth of a variety of
self-assembled rare earth (RE) MSNW has been reported.’!?
When a metal film is deposited on Si(001) surface and an-
nealed, it forms compounds of nearly MSi; ; stoichiometry,
hexagonal AlB,-type structure, with the ¢ axis parallel to the
surface. The self-assembled MSNW can be grown on Si if
the magnitude of the lattice mismatch between the epilayer
and substrate is large along one crystal axis and small along
the perpendicular axis, leading to the formation of long,
straight wires confined in their width due to the effects of
strain. This was first observed for Dy (Refs. 3-7) and later
for Er,>® Ho,> Gd,'° and (though not from RE metals) Sc
(Ref. 3) and Y.""!! These wires have the widths and heights in
the range of 1.5-11 and 0.2—4 nm, respectively, depending
on the lattice mismatch. The average lengths of the nano-
wires were in the range 150—450 nm and are determined
primarily by kinetic factors."3 They exhibit atomically flat
surfaces, are also robust, straight, and conductive, which are
useful properties for any potential application in nanodevice
architectures.'

Despite of the sustained experimental progress in the syn-
thesis, characterization, and possible application of MSNW,
there remains rather limited theoretical description yet. Is-
sues of relative stability of small clusters and nanowires were
theoretically considered for hexagonal'>'* and pentag-
onal'>!> smallest cross-section shapes. Previously we have
explored metal-silicon structures from nanotube point of
view,'® demonstrating that the Si isomorphs of the thinnest
fullerene tubes (2,2) and (3,0) can be stabilized by placing
certain metal atoms along the tube axis. The structures ob-
tained in the course of relaxation appeared, somewhat unex-
pectedly, to be identical to the bulk-derived metal silicide
wires; we have explored their stability by computing and
mapping the cohesive energies.'®!” The results however
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were limited to the thinnest wire of one primitive cell cross
section, while experimentally observed MSNW are often
several times thicker. It is important to extend the analysis to
the larger cross sections, and to see if general regularities in
cohesive energy (E,) behavior can be revealed. In this paper,
we have used atomistic simulations to investigate the struc-
ture, energetics, electronic, and mechanical properties of
such MSNW of various cross sections and accordingly of
various stoichiometries. We concentrate our attention on yt-
trium silicide nanowires (YSNW). Although yttrium has no f
electrons—a formal attribute of the rare earths—still it is
generally associated with the RE elements due to its similar
physical and chemical properties. Therefore the study of
YSNWs can provide an idea of the properties of the whole
group of RE silicide nanowires. It should be also pointed out
that YSNWs have lattice mismatch close to zero with the
Si(001) surface in the axial direction of the nanowire,!?
which makes in principle formation of long, high aspect ratio
wires more likely.

The paper is structured as follows. In Sec. II we describe
the computational methods. Section III shows that the ap-
proach correctly accounts (compared with other theoretical
methods and sometimes also with experimental data) for the
properties of bulk YSi, and also for the properties of the
thinnest YSNWs. Section IV discusses the relative stability
of several YSNWs with different cross-section dimensions
and based on that a general equation for the prediction of the
nanowire cohesive energy is proposed. Section V before the
summary discusses the formation of vacancies in YSNWs
and their influence on the electronic and structural properties
of the possible wires.

II. COMPUTATIONAL APPROACH

All calculations in this work are performed using density
functional theory (DFT) (Refs. 18 and 19) and the plane
wave method?®?! implemented in the Quantum-ESPRESSO
package.?” For the treatment of the exchange and correlation
term we use the local spin-density approximation (LSDA)
within the generalized gradient approximation (GGA).2324
Calculations have been done using ultrasoft Vanderbilt
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pseudopotentials.?® For partial occupancies we used Meth-
fessel-Paxton smearing method.?® The width of the smearing
was chosen 0.272 eV (0.02 Ry). The cutoff energy of 30 Ry
for the plane wave expansion and 210 Ry for the electronic
charge density was found to be sufficient to obtain conver-
gent results. The I" point was used for the Brillouin zone
integrations in the case of the finite structures, and 1 X1
X 16 k-point sampling along the nanowire axis was used for
the infinite nanowires. For the bulk and slab structures the
k-point sampling was 8 X 8 X 8 and 16 X 1 X 16, respectively.
In all cases the Monkhorst-Pack scheme®’ was used. The
total energy was converged to 107® Ry and ionic positions
were optimized until the forces acting on them were less than
0.026 eV/A (1073 Ry/Bohr). To study properties of finite
clusters the supercell geometry was taken to be a tetragonal
cell with lattice constant L sufficiently big to avoid interac-
tions between finite clusters (~1 nm vacuum distance was
chosen between structures). For infinitely long structures the
supercell was also tetragonal with the dimension LX L X L,,
where the z direction is defined as the axial direction of the
nanowire. Different cells with different L, values were con-
sidered in order to obtain the optimized value for each stud-
ied nanowire. Similar optimization was performed in the
case of two-dimensional and bulk systems.

III. THINNEST YTTRIUM SILICIDE NANOWIRES

Low dimensional forms of materials may have properties
quite different from those of their archetype bulk structures.
Throughout this paper we illustrate this with few examples
for our particular nanostructures. Bulk binary silicides of
several RE metals and also Y exhibit the AlB, structure and
have been reported to have the approximate formula
MSi, ;.28 Deviation from MSi, suggests that vacancies exist
in the silicon sublattice and indeed extensive studies®® con-
firm that in a unit cell of nine sites, one of the six sites
occupied by the Si atoms is vacant. Our computed structural
parameters a and c/a, for the stoichiometric YSi, structure,
are 4.108 A and 0.960, respectively, being in good agree-
ment with other theoretical calculations.?” The obtained val-
ues, however, are rather different from the experimental ones
(a=3.842 A, ¢/a=1.077)2%% This discrepancy is mainly
due to the presence of silicon vacancies in epitaxial
samples.?” We have also calculated the bulk modulus B for
YSi, and the obtained value B=85 GPa is rather small com-
pared, for example, to the experimentally obtained B
=169 GPa for CoSi,."

Analysis of the wires, YSNW, we begin with the descrip-
tion of the properties of the thinnest possible freestanding
YSNW of AlIB,-type structure, with diameters of the order of
~0.5 nm. The MSNWs grown on Si(001) have typical
height of about 0.5 nm,? so the discussion of very thin nano-
wires is justifiable. As pointed out in the Introduction, such
nanowire can be viewed as a (2,2) silicon nanotube with an
axially placed metallic chain of atoms, that is metal endohe-
dral silicon nanotube, M@SiNT. Each metal is located in the
center of a distorted hexagonal prism silicon cage [see, for
example, Fig. 1(b)]. It is already known that pure (2,2) SiNT
lacks stability.'®*! Using ab initio calculations we have pre-
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FIG. 1. (Color online) (a) Axial view of the thinnest infinite
nanowire of AlB,-type structure; beige (light gray) is for Si and
green (dark gray) is for Y atoms. (b) Side view of the Y;Siyg cluster.
(c) Side view of the YsSiy cluster (top), and its axial cap view
(center); bottom axonometric projection clearly shows connection
of the nanowires (here YsSiy cluster) with the morphology of
fullerene nanotube (2,2), by highlighting the hexagonal facets of the
Si frame.

viously described'® how the SiNT of chiral symmetry (2,2) is
stabilized by the axially placed Sc and several other transi-
tion metal atoms. Similarly, in the present case the reinforce-
ment by the internal Y-Si bonding stabilizes the SiNT and the
resulting structure of stoichiometry Y Sig possesses large co-
hesive energy E.=3.92 eV. For comparison, the calculated
bulk cohesive energy (Ey.) for YSi, is 4.98 eV. The opti-
mized structure of the YSig nanowire is shown in Fig. 1(a).
To calculate the structure we have used the smallest unit cell
with eight silicon atoms and one yttrium atom. In that unit
cell we can distinguish two groups of atoms lying in two
parallel planes, normal to the wire axes. The distance be-
tween these planes is half of the nanowire lattice parameter
a(YSig)=3.824 A. One in-plane atomic group consists of Y
surrounded by four silicon atoms [see Fig. 1(a)], all at equal
distances from Y, dy ;=2.812 A. The second planar group
includes only four silicon atoms, all at identical but larger
distance from Y, dy 5;=2.962 A. In both cases the Y-Si dis-
tances are shorter than the corresponding values in the bulk,
dy.s(YSiy)=3.085 A. The Si-Si bond lengths are d,
=2.401 A, d);=2.372 A, d3,=2.401 A, and d;5=2.593 A,
where the subindexes correspond to atomic labels in Fig.
1(a). All these values are equal or bigger than the dg;g;
=2.372 A in bulk YSi,.

To assess the mechanical rigidity of the YSNWs we have
calculated the Young’s modulus, which accounts for the re-
sponse to axial stress. We found that the nanowire is quite
stiff, with the Young’s modulus of Y=144 GPa (assuming
cross-section area as 44 10\2, to include the Si radii). The
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FIG. 2. (Color online) The density of states of the thinnest Y Sig
nanowire. The beige (light gray) and green (dark gray) lines are the
projection of the total DOS (thicker black line) on the Si and Y
sublattices, respectively.

tension was estimated to be 1.2 eV/A for 2% strain. Similar
results were reported!® for the (3,0) Zr@SiNT, what may
suggest that the type of the metal has marginal influence on
the nanowire stiffness. This value is in a ballpark agreement
with the mentioned above bulk modulus B=85 GPa, as their
relationship Y=3(1-2v»)B holds well at the Poisson ratio v
~(.2, a typical value for solids.

Turning now to electronic properties, we found that the
infinite nanowire is metallic with substantial density of elec-
tronic states (DOS) at the Fermi level. Figure 2 presents
DOS of YSNW and also the projection of the total DOS on
the metal chain and the silicon-only frame. Interestingly, the
contribution of yttrium atoms to the DOS is very small at the
Fermi level (Eg). This result marks the difference between
the bulk YSi, and the YSNW, since both theoretical®>33 and
experimental® studies confirm that the Y d-state contribution
to the DOS of YSi, is significant at Ey and together with the
Si contribution is responsible for its metallic character. Go-
ing back to Fig. 2, the nonzero value for DOS at Ef is mainly
due to the contribution from the silicon frame, what may
explain the metallic character of all RE silicide nanowires
obtained experimentally.'

To ensure that stability is retained at finite length as well,
we considered finite clusters Y3Sirg and Y5Siy,, which were
found to be also stable with cohesive energies equal to 3.80
and 3.85 eV, respectively. Figures 1(b) and 1(c) (top) show
the lateral views of Y3Siyg and Y5Siyy clusters, respectively.
The end atoms of the clusters reconstruct into square caps as
can be clearly seen from the axial view in Fig. 1(c) (center).
The Y;Sing and YsSiyy clusters have the highest occupied
molecular orbital (HOMO) to the lowest unoccupied molecu-
lar orbital (LUMO) gaps of 164 and 59 meV, respectively.

Due to nonzero magnetic moment of Y, we have verified
for possible magnetism of the YSNW by carrying out spin
polarized calculations for all structures, and the optimized
infinite and finite structures where found to be nonmagnetic.
The magnetic moment of yttrium d electrons is quenched by
the p(Si)-d(Y) hybridization and as a results both finite and
infinite nanowires are nonmagnetic.

IV. ENERGY DECOMPOSITION FOR THICKER WIRES

Let us now consider the MSNW with larger cross-
sections, which can be viewed as nXm repetition of the
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FIG. 3. Schematics shows the corner of the nanowire, distin-
guishing the bulk (gray) and extra surface (circles filled with hori-
zontal and vertical lines), and edge (black) atoms. The bulk unit cell
is formed by one Y and two Si atoms. For those unit cells which are
adjacent to the surface there is an additional Si atom at the surface
per unit cell. At the corner, an extra half of the Si atom shown in the
figure is “shared” by two surfaces and should be counted as addi-
tional half-atom per edge.

primitive cell, properly terminated by extra Si atoms at the
surfaces. Such wires can also be viewed as a bundle of the
smaller, thinnest (discussed in Sec. III above) where every
two neighboring nanowires share the silicon atoms, while the
yttrium chains all lie parallel to the wire axis. We will call
the arrangement of building blocks in the n and m directions
as “vertical” and “horizontal,” respectively. In the special
case of infinite n (m) we get a vertical (horizontal) slab of
thickness m (n). For simplicity we consider here only wires
with rectangular cross sections, but the study can be ex-
tended to any desired cross section. The nXm wire has a
Yn~mSi2n-m+2n+2n+2m+2 or YSi2(1+1/n+1/m+l/n-m) stoichiometry,
where one can distinguish 3n-m bulk atoms from the extra
2n+2m surface atoms and two edge atoms. In Fig. 3 we have
shown schematics of the nanowire atoms assignment to the
bulk, surface, and the edge. Both surfaces and all edges ob-
viously contain extra Si atoms: the vertical surfaces add 2n,
the horizontal add 2m, and each edge adds 1/2 of an atom.
The bulk atoms include 27 -m silicon atoms and n-m yttrium
atoms. The composition can be characterized by the fraction
of metallic atoms, x=n-m/(Bn-m+2n+2m+2)=1/(3+2/n
+2/m+2/n-m), so that for the thinnest 1 X1 wire x=1/9
and for the inf X inf bulk x=1/2. In Figs. 4(a)-4(c) we have
shown three computed (fully relaxed) examples of the rect-
angular section wires with dimensions 1X5, 3X 1, and 3
X 3, respectively.

Direct energy computation of larger wires becomes ex-
ceedingly expensive as the number of atoms in a computa-
tional supercell increases rapidly as ~n-m. To circumvent
this difficulty, energy decomposition approach® suggests
separating the contributions that scale differently with the
thickness d: that is from the bulk (~d?), surface (~d') and
the edges (constant ~d°). With this in mind, the total energy
of Y,,.,,S10,.mi2ns2men Wire can be represented by the formula
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FIG. 4. (Color online) Axial view of fully relaxed nanowires
with three different cross sections: (a) “horizontal” 1 X5, (b) “ver-
tical” 3X 1, and (c) 3 X3 dimensions.

Et(n,m) =- NtEbC + 2”')/1 + 2m72 +4e+ NyEY + NSiESi7
(1)

where E,. is the bulk cohesive energy, y; and vy, are the
vertical and horizontal surface energies per unit cell (or
atom, in this case), ¢ is the edge energy, Ey and Eg; are the
metal and silicon atomic energies, Ny=n-m and Ng;=2n-m
+2n+2m+2 are the numbers of metal and silicon atoms, so
that N;= Ny +Ng; is the total number of atoms. Equation (1) is
common for macroscopic systems (where & can be ne-
glected), and even used for the surface energy definition.
However, extrapolating its utility into the nanoscale cannot
be taken for granted due to the close proximity and possible
mutual effects between the surfaces, edges, and the bulk.
One must verify if actual directly computed energies for the
very small structures follow Eq. (1) closely. In other words,
the question is if the energy parameters, i.e., coefficients in
Eq. (1) retain approximately invariant, universal values
among the variety of wires, for any n, m pairs. Formally, the
values for the four parameters Ey., 7y, ¥», and &, can be
easily obtained by calculating the total energies of four dif-
ferent wires (that is four different sets of n, m) but it is not
obvious that one can use then these values to calculate
E(n,m) of any other desired nanowire. While describing
now how to find such parameters, we will also try to answer
the question how accurate Eq. (1) can be. For this purpose let
us define the system cohesive energy per atom

Ec(n,m) = [NyEY + NSiESi - El(n,m)]/N[, (2)

where E(n,m) is given by Eq. (1). Clearly, for very large n,
m this approaches the bulk value, E (inf,inf)=E. Using
Egs. (1) and (2) one can define now the total nanowire sur-
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FIG. 5. (Color online) (a) Total surface energy 7y described by
Eq. (3) versus the nanowire dimensions n (vertical, squares) and m
(horizontal, circles). (b) Cohesive energy E. per atom as a function
of composition xNy/N,. The open and filled symbols correspond to
the values obtained from simple Eq. (4) and by directly computing
E, in the Eq. (2), respectively. (c) E, calculated using Eq. (4) for a
broad range of nanowires with n and m values (here, 1 to 100).
Notably, all the values are confined within a cigar-shaped area (light
gray) of a maximum width 0.4(y; —y,), which for y,=7y,=2¢ be-
comes an exact linear relationship. Here y;=1.243, y,=1.576, and
e=0.914 eV.

face energy as a difference between the bulk and wire cohe-
sive energies per atom, multiplied by N,

v(n,m) = N[ Ey. — E.(n,m)] =2ny, + 2my, +4e. (3)

Based on the values of Ey, Eg;, E,., and E(n,m) directly
obtained from computations, we now plot in Fig. 5(a) the
total surface energy given by Eq. (3) as a function of the
number n of vertical or the number m of nanowires’ horizon-
tal size. (We used for Ey. the value obtained from calcula-
tions for the bulk YSi, structure.) As can be seen from the
figure, in both cases the computed values of y(n,m) clearly
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follow linear relationships, thus confirming Eq. (3). This re-
sult is important since we can define the same vertical sur-
face energy for each wire from the family of nX 1 nano-
wires. The same is true for the horizontal surface energy for
the nanowires fused in the horizontal direction (1 X m fam-
ily). From the slope of the straight lines we can obtain the
values for y,; and ,. Numerically, best linear fitting to the
data of Fig. 5(a) yields the values y,=1.259 and 1y,
=1.537 eV. Surface energies can be also obtained indepen-
dently from more accurate calculations for slab or other con-
fined systems.?® The corresponding surface energies for the
thinnest slabs in both directions are 1.243 and 1.576 eV for
v and 7,, respectively. The agreement with the values above
is remarkably good (the difference is 1.3% and 2.5% for v,
and 7,, respectively) especially if one takes into account the
fact that only few data points [see Fig. 5(a)] were used to
calculate the slopes.

It is well known that for the thin slabs y; and 7y, may vary
with the slab thickness.’” It was also demonstrated that the
value for E, calculated from the bulk structure may lead to
errors in surface energies.’” Since our goal in this work is to
explore the existence of universal parameters, which are use-
ful to predict the E,. of nanowires, we estimate the values for
v; and 7, rather than calculate them to extreme accuracy.
The vertical slab consists of a set of graphenelike vertical
sheets of sp” bonded silicon atoms separated by yttrium lay-
ers. In this arrangement the silicon monolayers should not
too strongly interact with each other, and as a consequence
v does not depend significantly on the thickness of the slab
even for small m. This is not the case of horizontal slabs, in
which the silicon atoms do not form bonds in the planes
parallel to the slab surfaces but are rather arranged in planes
perpendicular to them and, consequently, stronger depen-
dence on slab thickness n can be expected. Indeed, for the
slab with thickness n=2, y, was calculated to be 1.291 eV
(for n=1, y,=1.576 €V), however, further increase of slab
thickness does not change 7, significantly since for n=3,
¥,=1.305 eV.

Summarizing the results, we can accept the value for vy,
similar for all nanowires and equal to 1.243 eV. The hori-
zontal surface energy decreases from y,=1.576 eV, for the
nanowire family 1 Xm, to the value of 1.291 eV, for nano-
wires with n>1. The value of & in Eq. (3) was calculated
(fitted to data) to be 0.809 eV and is the same for all nano-
wires except those from the 1Xm family for which e
=0.914 eV. (It is important to note that one cannot confirm
the value of & from independent calculations.)

The values for surface, edge, and bulk energies can be
used now to calculate the cohesive energy E. for any n X m
wires. Indeed, reversing Eq. (3) one can find E, (per atom) as

E.(n,m) = E,. — 2ny, + 2my, + 4¢)/N,. (4)

Figure 5(b) depicts E.(n,m) as a function of composition x
=Ny/N,=1/(3+1/n+1/m+1/n-m) for all nanowires. The
open symbols correspond to the values predicted by Eq. (4)
and the filled symbols mark the values obtained from the
computed total energies, following Eq. (2). As can be seen
from the figure, Eq. (4) gives very accurate predictions. In all
cases the error does not exceed 20 meV. More precise cal-
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FIG. 6. (Color online) Relaxed structure of Y 4Sig3 (only half of
the unit cell is shown). The vacancy site is marked as a black dotted
circle. Yellow translucent (light gray) balls indicate the initial posi-
tions of atoms of the complete Y gSigy nanowire, to show the de-
gree of relaxation around the vacancy.

culations of surface energies can farther improve the accu-
racy of Eq. (4), which is especially important for larger nano-
wires, when the cohesive energies are very close.

V. SILICON DEFICIENT NANOWIRES

Although ideal thin wire structure clearly shows an excess
of silicon due to surface closure (x<<0.33), the nanowires
produced experimentally are nonstoichiometric, often near
YSi; ; with x=0.37, as was mentioned in the Introduction.
This suggests that silicon vacancies exist not only in the bulk
structures, but also in one-dimensional systems. To explore
the properties of silicon deficient nanowires we created va-
cancies in the 3 X 3 (Y4Si3,) nanowire shown in Fig. 4(c). To
ensure that the distance between the vacancies is similar to
the observed experimentally we considered a unit cell two
times bigger than that shown in Fig. 4(c), corresponding to a
structure with stoichiometry Y 3Sigy. The vacancy was cre-
ated by removing one of the Si atoms closest to the wire axis.
This corresponds to a vacancy concentration z=1/82 (1.2%).
The resulting relaxed structure Y ;4Sig3 is shown in Fig. 6. To
evaluate the relative stability of Y 3Sig3 and Y gSigs, we have
first calculated the vacancy formation energy E,,. given by
the expression

E. .= E(Y 1§Sig3) + Eps; — E(Y15Sig4)
=82E (Y 5Sies) + pus; — 81E.(Y5Sie3)s (5)

where E(-) and E,(-) are the total and cohesive energies,
respectively, of Y gSig3 and Y 3Sigy nanowires, and Eyg; and
Ms; are the silicon bulk energy and—in general case—its
chemical potential. The calculated values for E,(Y 5Sig3) and
E.(Y gSigs) are 4.542 and 4.536 eV/atom, respectively. The
value of ug;=—4.485 eV was overestimated in our calcula-
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FIG. 7. DOS of the Y gSigs (top) and Y gSig3 (bottom) nano-
wires. Note that E=0 for both plots is chosen at the E for perfect
Y gSigs wire, whereas Eg for Si-depleted Y gSigz is lowered by
0.14 eV.

tions if compared with experimental data.?® From Eq. (5) we
obtained that E,,.=—0.435eV has a small but negative
value, meaning that the vacancy formation is favorable. This
is an important indication that not only in bulk metal
silicides?® but similarly in YSNW the strain induced by the
large size difference between Si and the metal is relaxed by
formation of Si vacancies. Furthermore, we have checked
that if one more Si atom is removed to form the Y,Sis,
structure, and the separation between the vacancies becomes
two times smaller than in Y 4Sig3, the formation energy be-
comes positive (E,,.=0.303 eV). This suggests the existence
of an optimum for the fraction of Si vacant sites formation,
as observed experimentally.?8

YgSig, without vacancies has a lattice parameter
a(Y 1gSigs)=7.666 A. Interestingly, in presence of vacancies
in the nanowire the lattice parameter does not vary too much
since a(Y 3Sig3)=7.657 A. The lattice parameter of Y,Sis,
a(YoSisn)=a(Y gSig,)/2=3.833 A, is also close to that for
YSig nanowire, so we can conclude that there is no signifi-
cant variation of the lattice parameter with nanowire diam-
eter.

The effect of vacancies on the DOS is shown in Fig. 7
(bottom) and for comparison is also shown the DOS for the
Y 5Sigs structure, see Fig. 7 (top). The Fermi levels for
Y 3Sigz and Y gSig, are 1.75 and 1.89 eV, respectively, so
due to the presence of vacancies there is a small shift of the
Erg, by 0.14 eV towards lower energies. Using ab initio cal-
culations Magaud et al.>3 obtained for bulk YSi,; and the
vacancy concentration of 11.1% a 1.5 eV shift of the Eg
toward lower energies. In our case the shift of the Fermi
energy is approximately ten times smaller which is under-
standable if one takes into account that the considered va-
cancy concentration is also ten times smaller. From Fig. 7 we
can see also that the DOS at Ey is nearly twice less in Y ;gSig3
than in Y 5Sigs, which again points towards better stability?
of this structure relative to the stoichiometric nanowire.

To compare the stability of Y gSig3, YgSigy, and bulk
YSi, we calculated for each structure the zero-temperature
limit of the Gibbs free energy of formation per atom, 6G,
defined as
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FIG. 8. (Color online) Gibbs free energy of formation per atom,
8G, as a function of composition x=Ny/N, [see Eq. (6)]. All struc-
tures with positive G are metastable and the least stable from that
group are the short wires (clusters). At the boundary (dashed line)
of thermodynamic stability appears the thinnest vertical slab with
6G=-0.022 eV. The points for Y gSig3 and Y;gSigs Wires overlap
since both structures are very close in energy.

5G=—EC—X,LLY—(1 _-x)/J“Sh (6)

where E_ is the cohesive energy of some Y,Si|_,, x=Ny/N;
li.e., 1/(3+1/n+1/m+1/n-m) for our wires] is the compo-
sition, and uy and ug; are the chemical potentials of Y and
Si, respectively. (Here again the obtained value for uy
=-4.34 eV is overestimated if compared with experimental
data.’®) The results of our calculations for G are summa-
rized in Fig. 8. From the figure one can see that both Y gSig;
and Y |Sig, are thermodynamically stable (at list at 7=0 K),
since 6G(Y gSig3)=—0.089 eV and SG(Y Sics)=—0.083 eV
have negative values, but are of course less stable than the
bulk structure with 8G(YSi,)=-0.538 eV. As expected from
our previous analyses, Y gSig; is slightly more stable than
Y, sSics and the difference between &G(Y gSigz) and
G (Y 1gSigs) multiplied by 82 (total number of atoms in the
unit cell) gives us approximately the value for the vacancy
formation energy obtained before. From Fig. 8 one can also
see that the thinnest nanowires are energetically less favor-
able; in the experiments however very thin (with small
heights) wires can be formed! since they are stabilized by the
contact with silicon substrate.

VI. SUMMARY

In summary, we have studied the structures, stability, and
electronic properties of yttrium silicide nanowires. Espe-
cially we have extended the approach towards larger
(thicker) wires were direct computations become costly due
to increasing number of atoms in the cross section. To over-
come this difficulty and also to obtain additional insight, we
have used energy decomposition approach,®> where the total
energy is separated into contributions from the bulk, sur-
faces, and the edges between the facets. Such separation,
although not rigorous at the nanoscale, since possible strong
interactions between the surfaces and with the edges can
break their individual meaning, holds nevertheless very well.
Universal (that is almost invariant in going from wire to
wire) energy parameters where determined from several ba-
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sic computed structures, and based on their values an equa-
tion was obtained for the cohesive energy of arbitrary nano-
wires. We obtained that the energy of nanowire surface
perpendicular to the growth direction is higher than that of
the surface parallel to that direction. We obtained also that
the nanowires with small cross-sections are energetically less
favorable. The metallic character of the metal-silicide nano-
wires is confirmed and found to be associated with the elec-
tronic properties of the silicon frame rather than to the metal
chain. We also found that the formation of silicon vacancies
is energetically favorable when the distance between them is
of the order of double the axial lattice parameter of the wire;
however when the vacancies are too many and too close to
each other (at lattice parameter distance) the formation en-

PHYSICAL REVIEW B 75, 035406 (2007)

ergy becomes positive. Our energy decomposition analysis
can be extended to nanowires with nonrectangular cross-
sections and can be also used to predict the stability of non-
wire systems such as, for example, zero-dimensional quan-
tum dots. (In the latter case, in addition to the ~d°, facets
~d?, and edges ~d' energies, a contribution from the verti-
ces ~d” must not be omitted.)
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