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1. MECHANICS OF SCALE
It has been known for quite some time that materials and
structures with small-scale dimensions do not behave in
the same manner as their bulk counterparts. This aspect
was first observed in thin films where certain defect struc-
tures were found to have deleterious effects on the film’s
structural integrity and reliability. This became a signifi-
cant concern because thin films are routinely employed as
components in microelectronics and microelectromechanical
systems (MEMS). Their properties frequently allow essen-
tial device functions and therefore accurate identification
of these properties is key to the development of new tech-
nologies. Unfortunately, most of our knowledge is based on
bulk material behavior, which many times fails to describe
material response in small-scale dimensions because of the
dominance of surface and interface effects, finite number
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of grains in a given structure (e.g., through the thickness),
and the role played by the manufacturing process (e.g., tex-
ture, residual stress, and dislocation structure). This last fea-
ture is particularly important since material surfaces and
microstructures are the result of the process employed to
deposit or remove material [1].

1.1. Thin Films

As thin film dimensions begin to approach that of the films
microstructural features, the material mechanical proper-
ties begin to exhibit a dependence on the specimen size. In
metallic thin films this translates to plastic yielding occurring
at increased stresses over their bulk counterparts. Although
this phenomenon was observed as early as 1959 [2], no
consensus or common basic understanding of it yet exists.
In addition to plastic behavior, other mechanical proper-
ties can exhibit size effects, such as fracture toughness and
fatigue resistance. Each of these properties operates on
a characteristic length scale that can be compared to the
physical dimensions of microelectronics, microdevices, or
nanodevices. This is shown schematically in Figure 1, which
utilizes a logarithmic length scale map beginning at the
atomic scale and ending at the macro scale. On the left
are four categories of structures and the regime where their
dimensional size fits on the length scale. On the right are
regimes indicating where dimensional size effects begin to
affect the material mechanical properties and theories used
to predict behavior. Elastic properties are dependent on the
bonding nature of the material and only exhibit size effects
at the atomic scale. In contrast, plastic, fatigue, and frac-
ture properties all exhibit size effects in the micrometer
and submicrometer regime. These properties all depend on
defect generation and evolution, which are mechanisms that
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Figure 1. Illustration of length-scale effects on the mechanical proper-
ties of materials.

operate on characteristic length scales [3]. These fundamen-
tal changes in mechanical behavior occur in the size scale
of MEMS and microelectronics devices, and thus, a better
understanding of inelastic mechanisms is required to better
predict their limits of strength and reliability.
The right side of Figure 1 also lists the theories used

to predict material behavior and the length scale where
they are applicable. These include classical plasticity, strain
gradient plasticity, discrete dislocation mechanics, molecu-
lar dynamics, and quantum mechanics. Classical plasticity
is described in terms of traditional continuum mechanics,
which describes the relationships between stress and strain
and is applicable for predicting behavior from a size
of approximately 100 micrometers and greater. Molecular
dynamics (MD) is at the other end of the scale and involves
the generation, mobility, and interaction between individual
dislocations, twinning, stacking faults, and other defects. It is
only applicable at the lower end of the scale since it is based
on large scale numerical simulation. Therefore, it is subse-
quently limited by current computational power (i.e., sys-
tems approximately one million atoms in size). In the regime
between classical plasticity and discrete dislocation mechan-
ics, a theory called strain gradient plasticity has been devel-
oped in the last decade to describe material behavior [4]. It
considers the effect of gradients in strain in the description
of flow behavior. A large number of theories have been pro-
posed. However, as will be discussed in Section 4, most of
these theories exhibit unreasonable predictions as the size
of the structure approaches one nanometer. For this rea-
son, its applicability is limited to structures with minimum
dimension of a few hundred nanometers. Between this the-
ory and molecular dynamic, a model based on discrete dis-
location dynamics has been postulated [5–7]. These models
are currently in an early stage of development so they are
not discussed here in detail.
The mechanical response of thin films depends on many

factors. Of particular importance is the existence of film
thickness effects that arise because of geometrical con-
straints on dislocation motion. Size effects on mechanical
properties begin to play a dominant role when one or more
of the structure’s dimensions begins to approach the scale
of the material microstructural features. The onset of plastic

deformation depends strongly on the ability of dislocations
to move under an induced stress [8, 9]. The ease of their
movement can be hindered by any number of obstacles such
as grain boundaries, precipitates, interfaces, etc. Specimen
size then begins to govern plastic behavior by creating geo-
metrical constraints, surface effects, and the competition
of deformation mechanisms (i.e., dislocation motion versus
twinning or phase transitions). Other effects that specimen
size can have on plastic deformation involve microstructural
changes. This includes grain size, morphology, and crystal-
lographic texture. Preferential grain orientations can result
from a minimization of surface energies [10, 11]. The aver-
age grain size is also typically on the order of the film thick-
ness, due to an effect called the “specimen thickness effect”
which depends upon grain boundaries being pinned by their
surface grooves, occurring when the mean equivalent grain
diameter is on the order of the film thickness [12, 13].
Several theoretical models, based on single dislocation

motion, have been proposed to explain the size effect phe-
nomenon [14–16]. However, each predicts strength increases
far below experimentally obtained values. The higher yield
point of metallic thin films is likely the result of a combined
interaction between strain hardening and deformation mode
transition from dislocation motion to twinning.
Several pioneering studies have experimentally identified

the existence of size effects on the plasticity of metals. These
studies were able to obtain experimental nanoindentation
data showing a strong size effect as evidenced by mate-
rial hardness decrease as indentation depth increases [17–
19]. Figure 2 is a reproduction of the data from Ma and

Plastic Depth h (µm)

300

400

500

600

700

800

0 1.0 2.00.5 1.5

[110]

[100]

H
ar

dn
es

s
H

(M
P

a)

Figure 2. Plot of hardness vs plastic depth illustrating how hardness
increases with smaller plastic depth. Reprinted with permission from
[18], Q. Ma and D. R. Clarke, J. Mater. Res. 10, 853 (1995). © 1995,
Materials Research Society.
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Clarke [18] of nanoindentation performed on epitiaxially
grown silver on sodium chloride and shows that the hardness
increases by a factor of two to three as penetration depth
decreases. Their results have been verified and expanded in
subsequent studies [20–27].
Other pioneering work involved bending strips of metal

of varying thickness around a rigid rod [28] and applying a
torque load to copper rods of varying diameter [29]. The
strips varied in thickness from 12, 25, and 50 �m and each
was bent around a rigid rod whose diameter was scaled to the
film thickness to ensure identical states of strain in each strip.
Figure 3 shows the results in the form of normalized bending
moment versus surface strain. It is clear from this plot that as
each strip was strained to the same degree, the thinner strips
required a larger bending moment. The copper rod experi-
ment used rods of varying diameter, 12–170 �m. A torque
was applied to each rod in order to twist them all to the same
degree (i.e. to identical states of strain). A plot of torque ver-
sus twist per unit length is shown in Figure 4 and indicates an
increase in strength by a factor of three for the smallest rod
over the largest. Direct tensile tests were also performed on
identically sized copper rods (Fig. 4). The authors concluded
that for the most part, no size effects existed when subjected
to direct tension. The results of these tests show a strength
increase for smaller structures over larger ones when subject
to bending and torsional loads.
In these pioneering studies, the size dependence of the

mechanical properties was considered to be a result of
nonuniform straining [23, 29, 30]. It was shown that classical
continuum plasticity could not predict the size dependence

Figure 3. Plot of normalized bending moment vs surface strain illus-
trating how the thinner films require more bending moment for the
same state of strain. Reprinted with permission from [28], J. S. Stolken
and A. G. Evans, Acta Mater. 46, 5109 (1998). © 1998, Elsevier Science.

Figure 4. Plot of applied torque vs twist for copper rods of varying
diameter and stress–strain of identical rods subject to direct tension.
Reprinted with permission from [29], N. A. Fleck et al., Acta Metal.
Mater. 42, 475 (1994). © 1994, Elsevier Science.

in this regime. The generally accepted size limit for accu-
rate description of plasticity by the classical theory is systems
with dimensions greater than approximately 100 �m. As
previously mentioned, molecular mechanics can accurately
describe material behavior at the atomic level. However,
due to the computational cost and limitations on perform-
ing atomistic simulations for more than one million atoms,
the maximum size regime computationally approachable is
systems with dimensions <0.1 �m [30]. This leaves an inter-
mediate region where a continuum strain gradient plasticity
theory, to describe material behavior, is highly desirable [4,
29–35].
In the aforementioned work of Fleck et al. [29], direct

tensile tests were also performed on identically sized cop-
per wires. The authors concluded that for the most part, no
size effects existed for this case. It should be noted that the
smallest rod diameter investigated by this group was 12 �m.
The homogeneous manner in which the uniaxial tests were
conducted appears to have hindered gradients in plasticity
from occurring. Can size effects then exist in the absence
of strain gradients? Recent work on tensile testing of thin
gold films of submicrometer thickness has shown that strong
size effects do indeed exist in the absence of strain gradi-
ents [36–39]. In these studies, grain size was held constant at
approximately 250 nm while specimen thickness and width
were varied systematically. Figure 5a is a composite scanning
electron microscopy (SEM) image showing the side view of
the three studied membranes with different thicknesses. For
each thickness, there is a characteristic number of grains
composing the film ranging from one to five. Stress–strain
plots for these films are presented in Figure 5b. They show
that the yield stress more than tripled when film thickness
was decreased from 1 to 0.3 �m, with the thinner specimens
exhibiting brittle-like failure and the thicker a strain soften-
ing behavior. It is believed that these size effects stem from
the limited number of grains in the film thickness, which lim-
its the number of dislocation sources and active slip systems.
In such case, other deformation modes such as twining and
grain boundary shearing accompanied by diffusion become
dominant [36]. The same features were observed in other
face center cubic (fcc) metals [36].
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Figure 5. SEM image highlighting the number of grains existing
through the film thickness (a). Note the various magnifications and 45�

tilt employed during imaging. Stress–strain plot for a gold membranes
0.3, 0.5, and 1.0 �m thick (b). Reprinted with permission from [37],
H. D. Espinosa et al., J. Mech. Phys. Solids 51, 47 (2003). © 2003, Else-
vier Science.

Clearly there are many things to learn about materials at
this scale. Future investigations should be pursued and focus
on varying the material microstructure systematically to gain
further insight into its effects on the size dependent plasticity
phenomenon. Further progress can also be made by combin-
ing experimental results with analytical and computational
studies to better understand the fundamental deformation
mechanisms, particularly the mechanics of dislocation gen-
eration, motion, interaction, and the competition between
inter- and intragranular deformation processes.

1.2. Nanostructures

As structures move beyond the submicrometer to the nano-
meter scale, description of mechanical behavior focuses on
issues other than the traditional ensemble of defects. For
instance, the length scale of a typical dislocation and the vol-
ume of material required for it to have significant influence
on deformation are large compared to the typical volume of
a nanosized object. Therefore, it can be argued that beyond

a certain point, other types of defects, surface forces, and
intermolecular processes control mechanical behavior.
Nanostructures can be described as either a bulk material

with a grain structure of a nominal size in the range of 1
to 100 nanometers, or structures with one or more dimen-
sions below 100 nm. A more rigorous definition is based on
the functionality of the structure (i.e., when dimensions are
such that new and unique properties can be achieved). An
example of a nanostructure is a carbon nanotube, which is
a molecular scale fibrous structure made of carbon atoms.
They were discovered by Sumio Iijima in 1991 and are a
subset of the family of fullerene structures [40]. The sim-
plest way to describe the structure of a carbon nanotube
is to imagine a flat plane of carbon graphite rolled into a
tube, much the same as a piece of paper; see Figure 6. Like
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Figure 6. Schematic drawings of a two-dimensional graphene sheet (a),
rolled-up sheet (b), and armchair (c), zigzag (d), and chiral (e) nano-
tubes. (c)–(e) Reprinted with permission from [41], M. S. Dresselhaus
et al., Carbon 33, 883 (1995). © 1995, Elsevier Science.
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paper, a graphene plane can be rolled in several directions
to achieve varying structures [41]. Figure 7 shows transmis-
sion electron microscopy (TEM) images of carbon nano-
tubes as a gathered bunch and in a rope-like form [42].
Since their discovery, many scientists have been fascinated
by their unique and outstanding properties. Extensive arti-
cles and books have been dedicated to carbon nanotubes.
Among those, Qian et al. [43] contributed a comprehensive
review article, “Mechanics of Carbon Nanotube,” from the
perspective of both experimentation and modeling.
Dislocation theory has been used to describe relaxation

and intramolecular plasticity in carbon nanotubes (CNTs)
[44]. By analyzing the dynamic topology of the graphene wall
of a CNT, Yakobson argued that dislocations dipoles result-
ing from Stone–Wales (SW) diatomic interchanges play a
key role in CNT relaxation under tension. The dislocation
core is identified as a 5/7 pentagon–heptagon and the dipole
as a 5/7 attached to an inverted 7/5 core; see Figure 8. When
the dislocations unlock, one of two possible mechanisms
occurs as a function of temperature. At low temperatures,
a mechanism of transformations 7/8/7 and then 7/8/8/7, etc.,
leads to the brittle failure upon formation of larger molec-
ular openings such as 7/14/7. At high temperatures, the two
dislocations glide away from each other in a spiral path.
When enough glide has taken place, they leave behind a
nanotube of smaller diameter and changed electrical prop-
erties; see Figure 8.
A dominant characteristic of nanostructures is that they

possess a rather large surface area to volume ratio. As
this ratio increases, interfaces and interfacial energy as well
as surface topography are expected to play a command-
ing role in deformation and failure processes. The picture
of nanoscale behavior can be viewed as the following: At
the larger end of the length scale, 50 to 100 nanometers,
dislocation generation and motion will continue to dictate
material behavior. As the grain size or structural dimen-
sions fall below this range, behavioral control is transitioned
to surface and intermolecular mechanisms. Understanding
the mechanics of these materials and structures, and the
competition and relationship between their deformation
mechanisms, will be essential to predicting their behavior
in applications of nanoscale electronics and devices. These

Figure 7. TEM image of a gathered collection of carbon nanotubes (a)
and bunched in a ropelike form. Reprinted with permission from [42],
V. Ivankov et al., Carbon 33, 1727 (1995). © 1995, Elsevier Science.
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Figure 8. (a) In an armchair CNT, the first Stone–Wales rotation of an
equatorially oriented bond into a vertical position creates a nucleus of
relaxation. SW rotations marked by arrows show further evolution as
(b) a brittle crack or (c) a couple of dislocations gliding away from
each other. (d) The change of the CNT chirality and a stepwise change
of diameter cause the corresponding variations of electrical properties.
Formation of the next SW defect continues the necking process, unless
the dislocations pile up at insufficient temperature. Reprinted with per-
mission from [44], B. I. Yakobsons, Appl. Phys. Lett. 72, 918 (1998).
© 1998, American Institute of Physics.

types of concerns compose the field of nanomechanics, the
foundation of which is currently being laid out.

2. MICRO- AND NANOSCALE
MEASUREMENT TECHNIQUES

Mechanical testing at the micro- and nanoscales is quite
challenging. Since the physical dimensions of specimens
range from a few hundred micrometers down to as small as
1.0 nanometer, novel mechanical testing methods have been
developed to successfully measure their properties. Speci-
mens of such size are easily damaged through handling and
it is difficult to position them to ensure uniform loading
along specimen axes. They are also difficult to attach to
the instrument grips. Testing has been shown to suffer from
inadequate load resolution as well as having data reduction
formulas that are hypersensitive to precise dimensional mea-
surements. To minimize these effects, a variety of micro- and
nanoscale testing techniques have been employed to investi-
gate size effects on mechanical properties. Reviews detailing
the particulars are given in [15, 45–47].
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2.1. Thin Film Measurement Techniques

The mechanical testing of thin films has been pursued for
a few decades. The methods are quite unique and diverse.
They can be grouped into four categories: depth sensing
indentation, bending or curvature, tensile tests, and micro-
electromechanical system approaches.

2.1.1. Depth Sensing Indentation
Depth sensing indentation is a widely used method for esti-
mating the mechanical properties of materials whereby a
material’s resistance to a sharp penetrating tip is contin-
uously measured as a function of depth into the mate-
rial. The result is a load-displacement signature with
loading and unloading segments that describe material
response. In recent years, instruments have been devel-
oped possessing subnanometer accuracy in displacement and
submicro-Newton accuracy in load [48–52]. Another major
improvement in the indentation methodology is the ability
to continuously measure contact stiffness at any point dur-
ing the test. These new tools have fueled interest in studying
the mechanical properties of thin films and nanostructured
materials by nanoindentation.
In indentation testing, the indenter tip geometry is gen-

erally pyramidal or spherical in shape and fashioned from
single crystal diamond. In micro- and nanoscale testing the
most frequently used indenter is the three-sided Berkovich
tip. This geometry allows the tip to be ground to a very
fine point, as opposed to the chisel-like point in four-sided
Vickers indenters, resulting in self-similar geometry over a
wide range of indentation depths. Other indenter geometries
include spherical (good for defining the elastic-plastic transi-
tion of a material; however, there is great difficulty in obtain-
ing high-quality spheres of sufficient hardness), cube-corner
(sharper than the Berkovich, but produces much higher
stresses and strains in the indenter vicinity that results in
cracking), and conical (has self-similarity like the Berkovich
with an additional advantage of no stress concentrations
from sharp edges; however, like the spherical indenter there
is difficulty in manufacturing high quality tips). Table 1 sum-
marizes the various indenter geometries.
The process of driving the indenter into the material

can be described as follows. After making contact, load
is applied to either maintain a constant tip displacement
rate or a constant strain rate. Initially, deformation consti-
tutes only elastic displacement of the material, which quickly
evolves into permanent or plastic deformation as the load
is increased. Thus, zones of elastic and plastic deformation

Table 1. Geometries of various indenters.

Parameter Berkovich Cube-corner Cone Spherical Vickers

Shape

C-f angle 65�35� 35�264� — — 68�

Projected
Contact area 24�5600d2 2�5981d2 �a2 �a2 24.5044d2

C-f stands for centerline to face angle, d stands for indentation depth, and
a stands for tip radius for cone and spherical indenters.

surround the penetrating tip with plasticity mostly occurring
in the vicinity of the tip and elasticity occurring ahead of the
plastic front. The situation is best described as a complex
interplay of elastic and plastic deformation processes. After
the prescribed maximum depth is achieved the unloading
process begins. As the load on the indenter is reduced, elas-
tic recovery of the material forces the indenter upward. The
measured load-deflection signature of this unloading pro-
cess is then governed only by the elastic properties of the
material. Typical loading and unloading curves are shown in
Figure 9. These curves show the behavior for a hard �©�
and a ductile (�) material. In comparison, the harder mate-
rial requires a larger load to drive the indenter to the same
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Figure 9. Schematic of the typical load-displacement signature
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quartz) and soft (aluminum) materials (b), and side-view schematic of
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penetration depth, reflective of its higher atomic cohesion.
The harder material also stores more elastic energy than
the softer material and undergoes less permanent deforma-
tion. This is seen during unloading where the harder mate-
rial traces a path closer to its loading curve than the softer
material. The softer material has a nearly vertical unload-
ing signature. This is indicative of very little elastic recovery.
When comparing the residual indentation marks the softer
material exhibits a larger and deeper mark.
Indentation testing uses the maximum point of the load-

deflection signature to determine the hardness �H� of the
material, defined as the ratio of applied load �P� to the
indenter/material contact area �A�:

H = P

A
(1)

The contact area is determined using the relationship
describing the surface area of the indenter with indenta-
tion depth, given in Table 1 for the various tip geometries.
This value is referred to as the “universal hardness” and
includes contributions from both elastic and plastic defor-
mation. With today’s instrumentation testing systems, this
can be calculated on a continuous basis as a function of
indentation depth.
Young’s modulus �E� is another important material prop-

erty that can be determined with nanoindentation testing.
There are two methods for determining these properties
based on the load displacement signature of the indent. The
first involves a technique developed by Doerner and Nix
[53] who took the approach that during the early stages of
unloading, the contact area between the indenter and mate-
rial is constant. Thus the unloading stiffness, S, is related to
the materials modulus via

S = dP
dh

= 2√
�
Er

√
A (2)

where S is measured stiffness of the upper portion of the
unloading curve, dP is the change in load, dh is the change
in displacement, A is the projected contact area, and Er is
the effective modulus determined by

1
Er

= �1− �2�
E

+ �1− �
2
i �

Ei
(3)

where E and � are the elastic modulus and Poisson’s ratio
for the specimen and Ei and �i are the same parameters
for the indenter. An important aspect of this method is
the accurate determination of contact area. By extrapolat-
ing the linear portion of the unloading curve to zero load
(see Fig. 9), an extrapolated depth can be used to determine
contact area. A perfect pyramid can be assumed at inden-
tation depths above 1 �m. However, below 1 �m a correc-
tion factor must be used in order to account for blunting of
the tip point [53]. This was accomplished by employing the
TEM replica technique to determine the Berkovich indenter
shape. Deviations from a perfect Berkovich tip below 1 �m
were identified.
Oliver and Pharr [54] built on these solutions by realizing

that unloading data is usually not linear but better described
with a power law,

P = A�h− hf �m (4)

where P is the load, h is the displacement, and A, m, and
hf are constants determined by a least squares fitting proce-
dure. Elastic modulus is then obtained from a variation of
Eq. (2),

S = dP
dh

= 2√
�
Er

√
A� (5)

where � describes the correction of the area function due
to tip blunting, approximately 1.034 for a Berkovich inden-
ter [54]. The advantage of the Oliver and Pharr method is
that the indent shape does not need to be directly measured.
The method is based on the assumption that elastic mod-
ulus is independent of indentation depth. By modeling the
load frame and specimen as two springs in series the total
compliance, C, can be expressed as

C = Cf + Cs = Cf +
√
�

2Er

1√
A

(6)

where Cf is the load frame compliance and the compliance
of the specimen, Cs , is

1
S
; see Eq. (2). If the elastic modu-

lus is constant with indentation depth, then a plot of C vs
A−1/2 is a linear function whose intercept is Cf . For large
indentation depths, the area function for a perfect Berkovich
indenter can be used, namely,

A�hc� = 24�5H 2
c (7)

Equation (7) is also a good starting place to estimate the
area function of the Berkovich tip. The area function for the
tip is ascertained from a series of indents at periodic depths,
100, 200, 400, 600, 1200, 1800 nm. For large indent depths
it also gives initial estimates of Cf and Er . These values can
then be plugged back into Eq. (6) to further estimate the
contact area for the successively smaller indents. This data
can be fit to the function

A�hc� = 24�5H 2
c + C1h1c + C2h1/2c + C3h1/4c + · · · + C8h1/128c

(8)

where C1 through C8 are constants. The first term is the
perfect Berkovich tip and the others describe the blunting
of the tip. In order to obtain the most accurate area func-
tion, this new value must be plugged into Eq. (6) again, the
process being iterated until convergence is attained.
Oliver and Pharr confirmed their method by obtaining

data for nine materials of varying properties and plotting
the computed contact area versus indentation depth with all
materials falling on an identical linear line defining the tip
area function. See Figures 24 and 25 in Oliver and Pharr
[54]. Once the area function is known, it can be used to
calculate E and H of other materials.
One inherent feature of these studies is that E and H

are not directly measured and that some of the assumptions
used in the data reduction may be violated. One of the key
assumptions is the power law given in (3), which is obtained
from a contact elasticity solution of a half space. These
assumptions become quite relevant in thin films for which
substrate effects are part of the experimental signatures [55–
57]. Bückle [58] has recommended that indentation depth in
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microindentation should not exceed 10% of the film thick-
ness in order to obtain reliable results. This is currently used
as a guideline in nanoindentation, which limits the minimum
film thickness that can be reliably tested, using the stan-
dard data reduction procedure given by Oliver and Pharr to
approximately 1–2 �m and larger. In general, this limit is
a function of substrate properties and film roughness. Nix
and co-workers developed a methodology to account for the
substrate effect, which enables the property measurement of
much thinner films.
The load-depth signature is a complex quantity that is

affected by events such as cracking, delamination, plastic
deformation, strain hardening, phase transitions, etc. In par-
ticular, gradients in elastic and plastic strains exist and are
a function of indentation depth [22, 23, 33, 35, 59]. Thus,
many interpretative methodologies have been devised in an
attempt to deconvolute these effects [60, 61].
A major complication of the nanoindentation technique,

observed in some materials, is the so-called “pile-up” and
“sink-in” of the material around the indenter tip [24, 62, 63].
Both effects are primarily a result of the plastic behavior of
the material and have a significant effect on the contact area
between the tip and specimen. Furthermore, the solutions
given are based on elastic contact mechanics and do not con-
sider the effects of plasticity in the indentation process. The
inclusion of plasticity into the solution is a complex process
since the constitutive equations are nonlinear. Also, mate-
rial properties such as yield stress and work hardening must
be included, which are heavily dependent on microstructural
aspects that can vary from specimen to specimen.
Figure 10 illustrates the problems of “pile-up” and “sink-

in.” Pile-up occurs in soft materials, such as metals, whereby
the ease of deformation results in localized deformation in
the region near the indenter tip. The result is material piling
up around the indenter and effectively increasing the con-
tact area between sample and indenter. By contrast, stiffer
materials are more difficult to deform and the strain fields
emanating from the penetrating indenter spread further into
the material and effectively distribute the deformation to
more volume, further away from the indenter. The sink-in
effect arises from this feature and results in less contact area

Figure 10. Schematic representation illustrating how the contact area
changes during pile-up and sink-in effects. Reprinted with permission
from [24], K. W. McElhaney et al., J. Mater. Res. 13, 1300 (1998). © 1998,
Materials Research Society.

between the indenter and sample. The result is that pile-up
tends to overestimate hardness and modulus due to higher
contact areas and sink-in tends to underestimate hardness
and modulus due to lower contact area.
Attempts to deconvolute the substrate effects were inves-

tigated by Saha and Nix [56]. In this work, soft films that
were deposited on a variety of relatively harder substrates
were probed by nanoindentation; see Table 2. These systems
included cases where elastic homogeneity existed between
the film and substrate, that is, when the expected elastic
modulus of the film was equivalent to the substrate (e.g.,
aluminum on glass), and cases where elastic modulus dif-
fered significantly (aluminum on sapphire). By employing
the parameter P/S2, where P is the indenter load and S
is the contact stiffness, and plotting it versus indentation
depth, a description of material behavior is obtained. This
parameter was first proposed by Joslin and Oliver [64], who
realized that both components, P and S, are directly mea-
sured in the test. They examined and combined their ana-
lytical relations, Eq. (1) for P and Eq. (5) for S, to obtain

P

S2
= 1
�2
�

4
H

E2
r

(9)

which shows that the parameter is independent of the con-
tact area (i.e., tip calibration) and thereby is also not cor-
rupted by pile-up or sink-in effects. Since H and E remain
constant with indentation depth for homogeneous materi-
als, the parameter P/S2 should be independent of depth
as well. By this method, Saha and Nix have shown that
when elastic homogeneity between film and substrate is met,
the Oliver and Pharr data reduction method [54] allows
the decoupling between indentation size effects, at small
depths, and substrate induced strain gradient effects, at large
depths whereby a plateau representing true intrinsic mate-
rial behavior is obtained.
In the same work, Saha and Nix [56] also developed a

method to account for substrate effects in cases that do not
possess elastic homogeneity. Using the elastically homoge-
neous aluminum (Al) film on glass substrate as a starting
point, they first assumed that since the glass substrate is
much harder than the aluminum, all plastic deformation is
accommodated by the Al film with no deformation occur-
ring in the substrate until the indenter makes contact with it.
This allowed them to make a second assumption, basically
that the film hardness measured for the Al/glass system was
its intrinsic value and therefore also representative of the
film hardness for the Al/sapphire system. With this knowl-
edge they calculated the reduced modulus via Eq. (9) and

Table 2. Film/substrate systems tested by Saha and Nix. Al/Al, Al/glass,
W/sapphire are elastically homogenous systems.

Films Substrates E (GPa) H (GPa)

Aluminum (Al) aluminum 75 1
E = 75 GPa
H = 1 GPa glass 73 6

Tungsten (W) silicon 172 13
E = 410 GPa
H = 15 GPa sapphire 440 30
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corresponding true contact area from Eq. (5). These values
provided a means to compare experimental work with an
existing model developed by King [65]. The King model was
actually a modification of a treatment developed by Doerner
and Nix [53] who, in the specific case they studied, were able
to include a term in the reduced modulus, Er , to account
for the substrate effect. The King treatment built on this by
modeling the system with a flat triangular indenter geometry
resulting in a reduced modulus given by

1
Er

= 1− �2i
Ei

+ 1− �2f
Ef

�1− e−�t/a�+ 1− �2s
Es

�e−�t/a� (10)

where Es and �s are the elastic modulus and Poisson’s ratio
of the substrate respectively, a is the square root of the
projected contact area, t is the thickness of the film below
the indenter, and � is a scaling parameter that depends on
a/t, which varies with indenter geometry. Saha and Nix have
modified this analysis through incorporating a Berkovich
indenter geometry by replacing t in Eq. (10) with �t − h�,
where h is the indenter displacement into the film. Thus,

1
Er

= 1− �2i
Ei

+ 1− �2f
Ef

�1− e−��t−h�/a�+ 1− �2s
Es

�e−��t−h�/a�

(11)

Substituting constants for E and � of each component,
with Ef taken from the elastically homogeneous case, yields
the reduced modulus as a function of indentation depth
that can be compared with the experimental Er calculated
through Eq. (9). Sara and Nix found that these two meth-
ods are in good agreement for up to 50% of the film thick-
ness, after which the experimentally obtained Er begins
to decrease. Finally, by incorporating the experimentally
obtained Er values into the modified King model, a plot
of the film modulus versus indentation depth is obtained;
see Figure 11. Here Ef is seen to agree well up to 50%
of the film thickness before beginning to decrease indicat-
ing that the King model is overpredicting the effect of the
substrate. These data show that the modified analysis based
on Eq. (11) is an effective method for estimating thin film
modulus wherever substrate effects become relevant.
Hardness and elastic modulus are the properties most

routinely measured by nanoindentation. However, it has also
been shown to be an effective method for measuring other
material properties such as fracture toughness in small vol-
umes [66, 67], strain rate sensitivity and internal friction
[68], and thermally activated plastic flow [69]. The frontier
of nanoindentation revolves around combining current mea-
surement and analysis with finite-element techniques [61,
70–73]. This combination will further aid the study of mate-
rial mechanical behavior, especially those with nonlinear
features. Finally, the so-called “Holy Grail” of nanoindenta-
tion will be the generation of material stress-strain behavior
from indentation data such that mechanical properties, such
as yield and postyield properties, can be estimated. Further
information on recent progress in nanoindentation can be
found in the literature [74–76].

(a)

(b)

Figure 11. Comparison between modified King model and Saha and
Nix experimental data for reduced modulus (a) and film modulus (b) of
aluminum film on the substrates indicated. Reprinted with permission
from [56], R. Saha and W. D. Nix, Acta. Mater. 50, 23 (2002). © 2002,
Materials Research Society.

2.1.2. Bending and Curvature
Bending and curvature testing consists of microbeam bend-
ing, wafer curvature, and the bulge test. Bending tests
on micromachined beams were first performed by Weihs
et al. [77] and repeated by others [78–85]. The method
involves deflecting a freestanding cantilever-like beam fixed
at one end to the substrate. Building such structures on the
micrometer scale is achieved with standard microfabrication
procedures used in the microelectronics field. Dimensions
are on the order of a few micrometers to submicrom-
eter thickness, tens of micrometers wide and hundreds
of micrometers in length. Structures of this size have an
extremely low stiffness and therefore high-resolution load
cells are required to perceive the response of the beam.
Nanoindenters have been shown to provide such load res-
olution and are routinely used to deflect such structures.
A schematic of a typical microcantilever structure being
deflected by a nanoindenter is shown in Figure 12. By this
method, simple elastic beam theory can be applied. Namely,

k = Eb
4�1− �2�

(
t

l

)3
(12)

where k is the stiffness, E is the elastic modulus, b is the
cantilever width, � is Poisson’s ratio, t is the thickness, and
l is the length of the cantilever at the point of contact.
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Figure 12. Schematic three-dimensional (3D) view of a freestanding
cantilever structure. Parameters are defined in the text.

An example of results obtained from this method are
shown in Figures 13 and 14. Figure 13 is an optical image of
a common single crystal Si atomic force microscopy (AFM)
tapping-mode tip and the corresponding load-deflection sig-
nature obtained after deflecting it with a nanoindenter [84].
In this structure the Si is oriented such that the length of
the cantilever is parallel to the [110] direction. The stiffness,
k, was found to vary between 2�58 × 10−4 to 2�61 × 10−4

mN/nm which corresponds to a modulus of 166 to 168 GPa
when using Eq. (12), close to that of the [110] direction
for Si, 170 GPa [86]. Another example of microcantilever
bending results is shown in Figure 14 for thin film ultra-
nanocrystalline diamond (UNCD). The figure shows load-
deflection results on UNCD freestanding cantilevers at var-
ious cantilever lengths [84, 85]. As expected, the stiffness
decreased as cantilever length increased. Using Eq. (12),
the modulus was found to be between 945 and 963 GPa.
The microcantilever bending test has shown to be a viable
method to measure elastic properties; however, the tech-
nique exhibits some unique features. For example, the ana-
lytical solution is very sensitive to the measured thickness,
as seen in Eq. (12) where its influence is to the third
power warranting that extra care must be taken to accu-
rately measure the specimen thickness. Undercutting during
the release step introduces uncertainties in the measurement
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Figure 13. Optical images of (a) a silicon AFM tapping-mode tip and
(b) corresponding load-displacement curve. Reprinted with permission
from [84], B. C. Prorok et al., Exp. Mech. (2003). © 2003, Society for
Experimental Mechanics.
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Figure 14. Load-deflection curves comparing load-displacement signa-
tures for cantilevers lengths of 60, 80, 100, and 120 �m. Reprinted with
permission from [84], B. C. Prorok et al., Exp. Mech. (2003). © 2003,
Society for Experimental Mechanics.

of the cantilever length. Defining an equivalent cantilever
length circumvented this problem [84]. The technique also
suffers from boundary bending effects and inhomogeneous
distribution of the strain since the bending moment is not
constant along the length of the beam. Florando et al. [83]
have put forth a solution to this issue by using a beam with a
triangular width. Stress-strain behavior for the material can
then be more accurately obtained.
Another bending based test is the wafer curvature

method. Typically when a thin film is deposited on a sub-
strate at elevated temperatures and then cooled to room
temperature, the difference in the thermal expansion coeffi-
cient between the two materials will cause curvature in the
structure to accommodate the strain. Whether this curvature
is convex or concave is determined by which material has the
greater coefficient of thermal expansion and if the film has
tensile or compressive residual stress. This technique deter-
mines film properties by taking advantage of the fact that
stress in the film is proportional to the radius of curvature
of the substrate [87],

� = Es
�1− �s�

t2s
6tf
Kf (13)

where tf is the film thickness, ts if the substrate thickness,
Es/�1− �s� is the biaxial modulus of the substrate, and Kf is
the change in curvature. This equation relies on the assump-
tion that the film completely accommodates lattice mismatch
with the much thicker substrate [88]. A further constraint
limits its application when the maximum bending deflec-
tion exceeds more than half the thickness of the substrate,
ts/2. Elastic and plastic properties can also be examined
by varying the temperature. The technique has been used
to examine a variety of thin films [15, 88–99]. There are
some complexities of the wafer curvature method that hin-
der accurate property measurement such as nonuniformity
of substrate-material adhesion and temperature. All in all,
the method yields information on the material properties
when confined by the substrate.
The third major bending based test is the bulge test,

developed by Beams in 1959 [100], where a freestanding
film is deflected by applying pressure with a compressed
gas or liquid. These specimens also take advantage of stan-
dard microfabrication procedures to define their structures.
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The geometry of the typical specimen consists of a thin
film membrane that spans a cylindrical or rectangular cham-
ber beneath. The film is fixed at the edges of the chamber
such that the remainder of its structure is freestanding. The
chamber is pressurized in a controlled manner that results in
the freestanding film bulging upward. The resulting “bulge”
height can then be measured by interferometry and other
techniques. The test is designed to determine the in-plane
mechanical properties of the film by eliminating specimen
edge effects. Moreover, it also avoids the complexities of
substrate material adhesion problems.
The technique has evolved over the years to settle on

high aspect ratio rectangular chambers due to the “wrinkling
effect” caused by biaxial states of stress that develop near
the corners. This geometry confines the effect to the vicinity
of the rectangle’s short ends and allows uniform deforma-
tion to occur in the middle of the structure. Figure 15 is a
cross-section of this region. Here, H is the bulge height, a is
the membrane half-width, and P is the applied gas pressure.
Pressure is related to bulge height through the relation

P = 2�0t
a2
H + 4Et

3a4�1− �2�H
3 (14)

where �0 is the residual stress, t is the film thickness, E is
the material elastic modulus, and � is the Poisson’s ratio.
The result of a test is a pressure-deflection plot describ-
ing the membrane behavior. A typical membrane response
with several loading and unloading cycles is shown in Figure
16a for a freestanding Au film 1.8 �m thick. A comparison
between the bulge and tensile tests was made for Si3N4 by
Edwards et al. [101], whereby the elastic modulus of each
technique was found to vary by as little a 1 GPa, 257 ± 5
GPa for tensile and 258 ± 1 GPa for bulge, and validating
the bulge test as a viable wafer-level technique.
The method is able to examine both elastic and plastic

properties. As in the case of nanoindentation, the stress-
strain state in the film is not measured directly and requires
a data reduction procedure that accounts for boundary
effects. However, in the case the high aspect ratio mem-
brane, stress and strain are nearly uniform in the short direc-
tion and can be approximated by

! = 2
3a2
H 2 (15)

� = �0 +
E

�1− �2�! =
a2

2t
P

H
(16)
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Figure 15. Cross-section of the middle of a high aspect ratio rectangu-
lar membrane; parameters are defined in the text.

(a)

(b)

Figure 16. Pressure–height plot (a) and stress–strain plot (b) for bulge
testing of an evaporated Au membrane 1.8 �m thick. Reprinted with
permission from [46], O. Kraft and C. A. Volkert, Adv. Eng. Mater. 3,
99 (2001). © 2001, Wiley-VCH.

Using these equations, stress and strain can be extracted
from the data. A plot of the stress-strain response of the
data in Figure 16a is shown in Figure 16b. Several studies
have utilized this technique to test thin films [102–107]. The
apparatus required to perform a bulge test is simple and the
method is an easy way of evaluating the in-plane mechanical
properties. However, sample preparation is involved and is
restricted to thin films with tensile residual stresses. Films
with compressive stresses can buckle; in such a case the ini-
tial dome height must be determined as accurately as pos-
sible to avoid large errors in the experimental results. The
experimental values are more accurate when the membrane
is flatter.

2.1.3. Tensile Testing
The previously mentioned techniques can all be character-
ized as methods that subject the specimen to gradients of
strain, which at the micro- and nanoscales can complicate
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extraction of material property data. Also, their flexibility
for testing specimens of varying geometry is limited. Thus,
the equivalent of a tensile test, customarily to that per-
formed on bulk samples, is desirable in this regard. Tensile
testing is the most direct method for obtaining a mate-
rial’s mechanical properties. Loads and strains are measured
directly and independently, and no mathematical assump-
tions are needed to identify quantities describing the mate-
rial response. Many researchers have been involved in an
effort to establish a scale-equivalent test [36–39, 83–85, 108–
125]. However, tensile testing at the micro- and nanoscales
has been difficult to achieve. Difficulties arise from load
resolution, specimen fabrication, handling and mounting,
uniformity of geometry from specimen to specimen, and
independent measurement of stress and strain. The most
attractive features of direct tensile testing are that data
reduction is straightforward and the tests are much less
susceptible to geometrically induced errors. Nonetheless,
results reported in the many referenced studies vary some-
what, reinforcing the need for an easy to use tensile test that
minimizes sample preparation, handling, and mounting that
can produce numerous specimens of identical features.
Several noteworthy tensile testing schemes are worth

detailing here. Sharpe et al. [114–118] have developed a
micromachined frame containing the specimen. The fabrica-
tion process involves patterning the dog-bone specimen on
a silicon wafer and then etching a window underneath. The
final structure is shown in Figure 17. The finished tensile
specimen is then mounted in the testing rig and grips are
attached at either end. The two narrow sides are then cut
with a rotary tool to free the specimen from the frame sup-
port. A piezoelectric actuator is employed to displace the
specimen and subject it to uniaxial tension. Load is mea-
sured with a load cell possessing a resolution of 0.01 g and
a load range of ±100 g, and strain with an interferometric
strain displacement gauge. The typical width of specimens is
600 �m and the gauge length is 400 mm. Two sets of orthog-
onal strips are patterned on the surface of the specimen to
reflect the laser beam used in the interferometric strain dis-
placement gauge setup. When illuminated with the laser, the
strips produce interference fringe patterns that are used to
measure strain with a resolution of ±5 microstrain.
Another tensile testing technique, developed by Tsuchiya

et al. [122, 124, 125], employs an electrostatic force grip-
ping system to load the film. The specimen is fabricated
as a freestanding thin-film cantilever fixed at one end and

Figure 17. A tensile specimen fabricated at MIT (a) and at CWRU (b).
Reprinted with permission from [118], K. M. Jackson et al., Mater. Res.
Soc. Symp. Proc. 687 (2001). © 2001, Materials Research Society.

with a large pad at the other end. Schematics of the archi-
tecture and gripping process are shown in Figure 18. After
fabrication and release of the cantilever specimen, a probe
is aligned and brought into contact with the specimen free
end to be gripped. An electrostatic attractive force is gener-
ated between the two surfaces with an applied voltage. Up
to certain specimen dimensions, this force is rather large
compared to the force required to deform the specimen in
tension; therefore, the two remain rigidly fixed together as
long as the voltage is applied. Tensile testing is then achieved
through piezoelectric actuation of the probe along the axis
of the specimen with displacements measured by a strain
gauge at the probe. Specimen dimensions in the gauged
region are on the order of: length 30–300 �m; width 2–5 �m;
and thickness 0.1–2.0 �m.
Chasiotis and Knauss [112, 113] developed a testing pro-

cedure similar to that of Tsuchiya et al. Their test employs
electrostatic forces to pull the specimen pad to the substrate
while an ultraviolet curing adhesive then fixes a probe to
it. This process ensures that the specimen experiences min-
imum handling during attachment and improves alignment
between the specimen and probe since the specimen is tem-
porarily fixed to the substrate. The electrostatic force is then
reversed through identical poling of each side to release the
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Figure 18. Schematics showing the architecture of the electrostatic grip
system. Reprinted with permission from [125], T. Tsuchiya et al., Mater.
Res. Soc. Symp. Proc. 687 (2002). © 2002, Materials Research Society.
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combined pair from the substrate. Tensile testing proceeds
in a similar manner to that of Tsuchiya et al. with the main
difference being that measurement of strain fields is per-
formed through AFM and digital image correlation (DIC).
Another variation of the microscale tensile test employs

the cantilever architecture, but it possess a ring at the free
end rather than a gripping pad [120, 126]; see Figure 19. A
probe with a diameter just smaller than the inner diameter
of the ring is inserted and then pulled in the direction of the
specimen axis to apply direct tension. An optical encoder is
used to independently measure displacement. Results were
compared for two groups of specimens of significantly vary-
ing lengths to eliminate the error in stiffness due to defor-
mation of the ring. By assuming that the effective stiffness
was the same for each measurement the effect of the ring
was canceled out. A problem with this test is the difficulty
of eliminating friction between probe and substrate. This
feature complicates the data reduction procedure and inter-
pretation of the data.

Probe

Gauge Section

Anchored
To Wafer

(a)

(b)

Figure 19. SEM image of the cantilever-ring architecture (a) and
schematic of the loading process with experimental results for two spec-
imens of different lengths (b). Reprinted with permission from [126],
S. Greek et al., J. Micromech. Microeng. 9, 245 (1999). © 1999, Institute
of Physics.
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Figure 20. 3D schematic view of the membrane deflection experiment.

Another noteworthy microscale tensile test, called the
membrane deflection experiment (MDE), was developed
by Espinosa and co-workers [36–39, 119]. It involves the
stretching of freestanding, thin-film membranes in a fixed–
fixed configuration with submicrometer thickness. In this
technique, the membrane is attached at both ends and
spans a micromachined window beneath (see Fig. 20). A
nanoindenter applies a line-load at the center of the span
to achieve deflection. Simultaneously, an interferometer
focused on the bottom side of the membrane records the
deflection. The result is direct tension in the gauged regions
of the membrane with load and deflection being measured
independently. The geometry of the membranes is such that
they contain tapered regions to eliminate boundary-bending
effects and ensure failure in the gauge region (see Fig. 21).
The result is direct tension, in the absence of bending and
strain gradients of the specimen.
The MDE test has certain advantages; for instance, the

simplicity of sample microfabrication and ease of handling
results in a robust on-chip testing technique. The loading
procedure is straightforward and accomplished in a highly
sensitive manner while preserving the independent measure-
ment of stress and strain. It can also test specimens of widely
varying geometry, thickness from submicrometer to several
micrometers, and width from one micrometer to tens of
micrometers.
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∆
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Figure 21. Side view of the MDE test showing vertical load being
applied by the nanoindenter, PV , the membrane in-plane load, PM , and
the position of the Mirau microscope objective. Reprinted with permis-
sion from [36], H. Espinosa et al., J. Mech. Phys. Solids (2003). © 2003,
Elsevier Science.
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The data directly obtained from the MDE test must then
be reduced to arrive at a stress-strain signature for the mem-
brane. The load in the plane of the membrane is found as
a component of the vertical nanoindenter load by the equa-
tions

tan $ = %

LM
and PM = PV

2 sin $
(17)

where (from Fig. 21) $ is the angle of deflection, % is the
displacement, LM is the membrane half-length, PM is the
load in the plane of the membrane, and PV is the load mea-
sured by the nanoindenter. Once PM is obtained the nominal
stress, ��t�, can be computed from

��t� = PM
A

(18)

where A is the cross-sectional area of the membrane in the
gauge region. The cross-sectional area dimensions are typi-
cally measured using AFM [37].
The interferometer yields vertical displacement infor-

mation in the form of monochromatic images taken at
periodic intervals. The relationship between the spacing
between fringes, ', is related through the wavelength of the
monochromatic light used. Assuming that the membrane
is deforming uniformly along its gauge length, the relative
deflection between two points can be calculated, indepen-
dently of the nanoindenter measurements, by counting the
total number of fringes and multiplying by (/2. Normally,
part of the membrane is out of the focal plane and thus all
fringes cannot be counted. By finding the average distance
between the number of fringes that are in the focal plane of
the interferometer, an overall strain, !�t�, for the membrane
can be computed from the following relation:

!�t� =
√
'2 + �(/2�2

'
− 1 (19)

This relationship is valid when deflections and angles are
small. Large angles require a more comprehensive relation
to account for the additional path length due to reflection
off of the deflected membrane. This task and further details
are given by Espinosa et al. [37].
The interferometer allows for in-situ monitoring of the

test optically. Figure 22 shows combined interferomet-
ric images and stress-strain plots obtained from a typical
membrane deflection experiment. The figure shows three
instances of stress in stretching a thin gold strip obtained
from the test. The first is at zero stretch and the second is
at an intermediate stretch where the elastic–plastic behav-
ior transition is exceeded and the strip is being permanently
deformed. The third is at a large stretch and shows large
local deformation indicating the strip is near failure. Data
from MDE tests of thin gold, copper, and aluminum mem-
branes have indeed shown that strong size effects exist in
the absence of strain gradients [36].
Recently, the membrane deflection experiment was

extended to measure fracture toughness of freestanding
films [127]. In this method, two symmetric edge cracks are
machined using a focused ion beam. A tip radius of 100 nm

Optical image of a Gold thin film strip

No stretching

Stress-Strain Curve

20 µmDeflection = 0 µm Deflection = 53 µmDeflection = 33 µm

Moderate stretching, material
elastic-plastic transition exceeded

Large stretching, localized
deformation, specimen near failure

Figure 22. Magnified area of a thin gold membrane as it is stretched
until it breaks. Three time points of stretching are shown that include
the interferometric displacement image and the resulting stress–strain
curve. Reprinted with permission from [36], H. Espinosa et al., J. Mech.
Phys. Solids (2003). © 2003, Elsevier Science.

is achieved; see Figure 23. The toughness is computed from
the equations

KIC = �f
√
�af

(
a

W

)
(20)
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where �f is the fracture stress, a is the length of the
crack, and W is the width of the gauge region as shown in
Figure 23c.
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Figure 23. (a) A scanning electron micrograph of the geometry of the
UNCD membranes, (b) a magnified area of the edge cracks, and (c) the
schematic drawing of the two-symmetric-edge cracks model.
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2.1.4. Testing Methods Based
on Microelectromechanical
System Technology

Microelectromechanical systems can be advantageously
employed in the testing of micro- and nanoscale specimens.
These devices consist of micromachined elements such as
comb-drive actuators and strain sensors that are integrated
components on the wafer. They have the potential to impact
the small-scale testing field through high resolution force
and displacement measurements. Several possibilities for
actuation and deformation measurement exist. The methol-
ogy is based on the fabrication of numerous specimens
of identical geometry and microstructure through standard
micromachining techniques.
A promising MEMS-based testing approach has been

developed by Saif et al. [128–132]. A single crystal micro-
machined structure is used for stressing submicrometer thin
films. In-situ SEM or TEM can be performed using this
structure; see Figure 24. One end of the structure is attached
to a bulk piezoelectric actuator while the other end is fixed.
Folded and supporting beams are employed to uniformly
transfer the load to the specimen, which is attached to a
supporting fixed–fixed beam. This beam, of known spring
constant, is then used as the load sensor. Two displacement
elements are placed at either end of the specimen where
the magnitude of displacement is imaged directly from the
separation of beam elements. An innovative feature of the
design is that the supporting beam structure is configured
such that it can compensate and translate nonuniaxial loads
into direct tensile loads on the specimen. In other words, the
piezoelectric actuator is not required to pull on the structure
exactly in a direction aligned with the specimen, thus solving
the difficult issue of loading device–specimen alignment.
Another MEMS-based testing approach employs a comb-

drive actuator to achieve time dependent stressing of the
specimen through voltage modulation [133–139]. The device
architecture consists of the microscale specimen with one

Figure 24. A SEM micrograph of the tensile test chip can be performed
in-situ inside a SEM or TEM. The freestanding specimen is cofabri-
cated with force and displacement sensors by microelectronic fabrica-
tion. Reprinted with permission from [132], M. A. Hague and M. T. A.
Saif, in “Proc. of the SEM Ann. Conf. on Exp. and Appl. Mech.,” Mil-
waukee, WI, (2002). © 2002, Society for Experimental Mechanics, Inc.

Figure 25. SEM micrographs of the fatigue test structure; (a) mass,
(b) comb-drive actuator, (c) capacitive displacement sensor, and (d)
notched cantilever beam specimen are shown. The nominal dimensions
of the specimen are as indicated in the schematic. Reprinted with per-
mission from [137], C. L. Mohlstein et al., Mater. Res. Soc. Symp. Proc.
687 (2002). © 2002, Materials Research Society.

end attached to a rigid mount and the other to a large perfo-
rated plate, which sweeps in an arc-like fashion when driven
electrostatically by a comb-drive actuator (see Fig. 25). The
resulting motion of the structure is recorded capacitively
by the comb-drive sensor on the opposite side. The result
is mode I stress concentration at the specimen notch. The
specimen is tested until failure occurs and yields fracture
and fatigue information about the material. Further details
can be found in the cited literature.
Other MEMS techniques have also employed electrostat-

ically driven comb-drives to perform other types of load-
ings. One such approach studied the effect of microstructure
on fracture toughness through controlled crack propagation
[140, 141]. The testing rig consists of a specimen anchored
to a rigid support at one end and linked perpendicularly to
a comb-drive actuator. The other end is attached to a beam
that connects to a comb-drive actuator (see Fig. 26). A notch
is either micromachined into the specimen (blunt notch) or
a crack is propagated into the specimen through a Vickers
microindent made in close proximity to the specimen. This
step is performed as an intermediate step during the micro-
fabrication of the specimen. The cracks, which radiate from
the indent corners, travel into the specimen. Upon actua-
tion of the comb-drive, the connecting beam applies mode I

(a)

(c)

(b)

(d)

Figure 26. SEM images a MEMS fracture device. (a) is the overall
device architecture, (b) is a close-up of the specimen, (c) gives the
relative dimensions, and (d) shows a buckled support beam, a prob-
lem stemming from residual stress during fabrication that plagues many
MEMS devices. Image courtesy of R. Ballerini.



570 Micro- and Nanomechanics

loading at the specimen notch or sharp crack. At a critical
value of displacement, controlled fracture is attained.
Another MEMS-based technique utilizes electrothermal

actuation to load specimens in direct tension [142, 143].
The device is designed such that slanted or axial beams
impose a deformation on the sample (see Fig. 27). The pro-
duced Joule effect causes local heating and expansion of
the beams. The thermal actuator pulls directly on the spec-
imen, stressing it in uniform tension. Strain is determined
from an integrated capacitive sensor and verified through
digital image correlation. The rig can also be employed
for fatigue testing by using a modulated voltage. However,
thermal actuation is hindered by a relatively slow response
time.
These MEMS techniques show great promise to test ever-

smaller specimens and are expected to have a great impact
on the development of nanoscale devices. When coupled
with finite element multiphysics modeling they should be
able to provide an accurate description of nanoscale struc-
tural response and associated features needed to predict
their behavior. These data are important for exploiting
micro- and nanoscale properties in the design of novel and
reliable devices with increased functionality.

2.2. Nanoscale Measurement Techniques

The property measurement of one-dimensional nano-
objects, such as nanowires (NWs) and CNTs, is extremely
challenging because of the miniscule size. As such, early
studies of their mechanical properties focused on theoret-
ical analyses and numerical simulations. They allowed the
prediction of Young’s modulus, buckling and local defor-
mation, and tensile strength [144–147]. Owing to advances
in microscopy, especially scanning probe microscopy (SPM)
and electron microscopy, nanoscale experiments employing
these tools have been developed. The main challenges in
the experimental study of one-dimensional nanosize speci-
mens are: (1) constructing appropriate tools to manipulate
and position specimens; (2) applying and precisely measur-
ing forces in the nano-Newton range, and (3) measuring
local mechanical deformation precisely. In the next sections,

Capacitive sensor

Chevron thermal actuator

Specimen

Specimen

Thermal actuator

Figure 27. Micromechanical fatigue testers with: (a) an eight-beam
chevron actuator and (b) a two-beam actuator. Reprinted with permis-
sion from [142], E. E. Fischer and P. E. Labossiere, in “Proc. of the
SEM Ann. Conf. on Exp. and Appl. Mech.,” Milwaukee, WI, 2002.
© 2002, Society for Experimental Mechanics, Inc.

we review techniques and methodologies addressing these
challenges.

2.2.1. Manipulation and Positioning
of Nanotubes

There are several methods used today to synthesize CNTs
including electric arc-discharge [148, 149], laser ablation
[150], and catalytic chemical vapor deposition [151]. CNTs
made by these methods are commercially available, although
still very expensive. During synthesis, nanotubes are usu-
ally mixed with residues including various types of carbon
particles. For applications or tests, a purification process
is required in most cases. In the most common approach,
nanotubes are ultrasonically dispersed in a liquid (e.g., iso-
propanol) and the suspension is centrifuged to remove large
particles. Other methods including dielectriphoretic separa-
tion are being developed to provide improved yield.

Random Dispersion Random dispersion is the easiest
method for most of the mechanical testing experiments to
date, but it is only modestly effective. After purification, a
small aliquot of the nanotube suspension is dropped onto
a substrate. The result is CNTs randomly dispersed on the
substrate. A metal layer is then uniformly deposited on top
of the substrate and patterned by a photolithography pro-
cess, after which some of the nanotubes become pinned by
a grid of pads [152]. To improve the probability of nano-
tube coverage, CNTs on the substrate are imaged inside a
scanning electron microscope and then this image is digi-
tized and imported to the mask drawing software, where the
mask for the subsequent electron beam lithography (EBL) is
designed. In the mask layout, the pads are designed to super-
impose over the CNTs [153]. This process requires an align-
ment capability of lithography with a resolution of 0.1 �m
or better.

Nanomanipulation SPM can be used both to image and
to manipulate carbon nanotubes [154]. Using AFM, an indi-
vidual multiwalled carbon nanotube (MWCNT) was suc-
cessfully isolated from a group of overlapped MWCNTs.
A “NanoManipulator” AFM system, comprising an
advanced visual interface, teleoperation capabilities for
manual control of the AFM tip, and tactile presentation of
the AFM data, was developed at the University of North
Carolina [155–157]. The NanoManipulator can take con-
trol of the AFM’s probe, move it to the desired location,
and manipulate atomic-scale structures. A software program
integrates force feedback and AFM. A haptic interface,
which is a penlike device, enables the users to remotely oper-
ate the NanoManipulator. More recently, they combined
AFM, SEM, and the NanoManipulator interface to produce
a manipulation system with simultaneous microscopy imag-
ing [294].
Electron microscopy provides the imaging capability for

manipulation of CNTs and NWs with nanometer resolu-
tion. Various sophisticated nanomanipulators under either
SEM [294, 158, 159] or TEM [160–163] have been devel-
oped. These manipulators are usually composed of both a
coarse micrometer-resolution translation stage and a fine
nanometer-resolution translation stage; the latter is based
on piezo-driven mechanisms. The manipulators have the
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capability of motion in three linear degrees of freedom,
and some even have rotational capabilities. Several probes
are attached to the manipulator and can be operated inde-
pendently. In general, the manipulation and positioning of
nanotubes is accomplished in the following manner: (1) a
source of nanotubes is positioned close to the manipulator
inside the microscope; (2) the manipulator probe is moved
close to the nanotubes under visual surveillance of the
microscope monitor until a protruding nanotube is attracted
to the manipulator due to either van der Waals forces or
electrostatic forces; (3) the free end of the attracted nano-
tube is positioned in contact with the probe and is “spot
welded” by the electron beam [164]; (4) the other end of
the nanotube is placed at the desired location and “spot
welded.” Nanodevices can be made using this approach. The
technique is being implemented with force feedback for hap-
tic control. Limitations in perception depth are so alleviated
[155, 159].

External Field Alignment Dc and ac/dc electric fields
have been used for the alignment of CNTs and nanoparticles
[165, 166, 301]. Microfabricated electrodes are typically used
to create an electric field in the gap between them. A droplet
containing CNTs in suspension is dispensed into the gap
with a micropipette. The applied electric field aligns the
nanotubes, due to the dielectrophoresis effect, which results
in the bridging of the electrodes by a single nanotube. The
voltage drop that arises when the circuit is closed (dc com-
ponent) ensures the manipulation of a single nanotube.
Dc/ac fields have been successfully used in the manipulation
of nanowires [167], nanotubes [165, 295], and bioparticles
[168–170].
Huang [171] demonstrated another method of aligning

nanotubes. A laminar flow was employed to achieve pref-
erential orientation of nanotubes on chemically patterned
surfaces. This method was successfully used in the alignment
of silicon nanowires. Magnetic fields have also been used to
align carbon nanotubes [172].

Direct Growth Instead of manipulating and aligning CNTs
after their manufacturing, researchers have also exam-
ined methods for controlled direct growth. Huang et al.
[173] used the microcontact printing technique to directly
grow aligned nanotubes vertically. Dai et al. [174, 298–300]
reported several patterned growth approaches developed
in their group. The idea is to pattern the catalyst in an
arrayed fashion and control the growth of CNTs from spe-
cific catalytic sites. The author successfully carried out pat-
terned growth of both MWCNTs and single-walled carbon
nanotubes (SWCNTs) and exploited methods including self-
assembly and external electric field control.

Nanomachining It is of scientific interest to open the cap
of MWCNTs to investigate the nanotube inner structure
and intershell frictional behavior. Cumings and Zettl [253]
have implemented an electric sharpening method to open
the ends of MWCNTs using TEM. The process involves
the electrically driven vaporization of successive outer lay-
ers from the end of the MWCNT, leaving the nanotube core
intact and protruding from the bulk of the nanotube. This
peeling and sharpening process can be applied repeatedly
to the same multiwalled nanotube until the innermost tube

protrudes, with a tip having a radius of curvature compara-
ble to that of a single-walled nanotube.

2.2.2. High Resolution Force
and Displacement Measurements

SEM, TEM, and SPM have been widely used in character-
izing nanotubes. These provide effective ways of measuring
dimension and deformation of nanotubes with nanometer
resolution. Electron microscopy uses high-energy electron
beams for scattering (SEM) and diffraction (TEM). Field
emission gun SEM has a resolution of about 1 nm and TEM
is capable of achieving a point-to-point resolution of 0.1–
0.2 nm. The resolution of SEM is limited by the interaction
volume between the electron beam and the sample surface.
The resolution of TEM is limited by the spread in energy of
the electron beam and the quality of the microscope optics.
AFM has become a powerful tool in the characterization

of CNTs due to its capability not only to map the surface
topography with nanometer resolution but also to manipu-
late CNTs. AFM can be operated in several modes: contact
mode, tapping mode (or force modulation mode), noncon-
tact mode, and lateral force mode [176–180]. The tapping
mode has been used to induce radial deformation of nano-
tubes in addition to the contact mode and the lateral force
mode [154, 181]. Scanning tunneling microscopy (STM) has
not been widely used in the mechanical testing of CNTs at
this stage, but it shows enormous potential since it can reveal
the atomic structure and the electronic properties of CNTs
[154]. The STM can be operated in two modes: constant
current mode and constant height mode. Figure 28 provides
several typical images taken by SEM, TEM, AFM, and STM.
Commercial force sensors usually cannot reach nano-

Newton resolution. Therefore, AFM cantilevers have been
effectively employed as force sensors [164, 187, 188], pro-
vided that their spring constant has been accurately cali-
brated. Alternatively, MEMS technology offers the capa-
bility to measure force with nano-Newton resolution. This
point will be further discussed in Section 2.3.
To date, the experimental techniques employed in the

mechanical testing of nanotubes can be grouped into five
categories: resonance, bending, radial, tensile, and torsion
loading.

2.2.3. Measurement Techniques
for Nanotubes and Nanowires

Resonance Treacy et al. [184] estimated the Young’s
modulus of MWCNTs by measuring the amplitude of their
thermal vibrations during in-situ TEM imaging (Fig. 29).
The nanotubes were attached to the edge of a hole in
3-mm-diameter nickel rings for TEM observation, with one
end clamped and the other free. The TEM images were
blurred at the free ends, and increasing specimen tempera-
ture significantly increased the blurring. This indicated that
the vibration was of thermal origin. Blurring occurs because
the vibration cycle is much shorter than the integration time
needed for capturing the TEM image.
A nanotube can be considered as a homogeneous cylin-

drical cantilever of length L with outer and inner radii a
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Figure 28. Typical images of CNTs taken by (a) SEM (reprinted with
permission from [164], M. F. Yu et al., Science 287, 637 (2000). © 2000,
American Association for the Advancement of Science.); (b) TEM
(reprinted with permission from [293], R. H. Baughman et al., Science
297, 787 (2002). © 2002, American Association for the Advancement of
Science); (c) AFM (image courtesy of C. Ke); and (d) STM (reprinted
with permission from [183], T. W. Odom et al., Nature 391, 62 (1998).
© 1998, Macmillan Publishers Ltd.). The imaging resolution of various
instruments is illustrated.

and b, respectively. For such a structure, the square of the
thermal vibration amplitude is given by

A2 = 16L3kT
E�a4 − b4�

∑
j

�−4
j ≈ 0�4243

L3kT

E�a4 − b4� (22)

where A is the amplitude at the free end, k is the Boltzmann
constant, T is the temperature, E is Young’s modulus, and
�j is a constant for free vibration mode n. By comparing the
blurred images, one can estimate the vibration amplitude
and deduce the value of Young’s modulus.
This method is fairly simple to implement and exploits

available instrumentation, including TEM holders with heat-
ing capability. As a matter of fact, this was one of the
first experiments to measure Young’s modulus of carbon
nanotubes. There are some drawbacks associated with this
method. Its accuracy to determine the vibration amplitude
by comparing the blurred images is limited, the shape of
the nanotubes is not exactly identical to a cylindrical can-
tilever, and the boundary conditions present some uncer-
tainty. Krishnan et al. [185] later applied this method to
SWCNTs.
Poncharal et al. [160] measured Young’s modulus by using

a method based on the mechanical resonance of cantilevered

Figure 29. TEM micrographs showing the blurring at the tips due to
thermal vibration at 300 and 600 K, respectively. Reprinted with permis-
sion from [184], M. M. J. Treacy et al., Nature 381, 678 (1996). © 1996,
Macmillan Publishers Ltd.

MWCNTs. The actuation was achieved utilizing an ac elec-
trostatic field within a TEM (Fig. 30). In the experiment,
the nanotubes were attached to a fine gold wire, on which a
potential was applied. In order to precisely position the wire

Figure 30. Dynamic responses to alternate applied potentials, (A)
absence of a potential, (B) at fundamental mode, and (C) at second
harmonic mode. Reprinted with permission from [160], P. Poncharal
et al., Science 283, 1513 (1999). © 1999, American Association for the
Advancement of Science.
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near the grounded electrode, a special TEM holder with a
piezo-driven translation stage and a micrometer-resolution
translation stage was used. Application of an ac voltage to
the nanotubes caused a time-dependent deflection. The res-
onant frequencies were then related to Young’s modulus,
viz.,

�j =
�2j

8�
1
L2

√
�a2 + b2�

√
E

.
(23)

where a is the outer diameter, b is the inner diameter, E
is the elastic modulus, . is the density, and �j is a con-
stant for the j harmonic. The elastic modulus can then be
estimated from the observed resonance frequencies. This
method requires the precise positioning of the nanotubes
against the counterelectrode, which can only be achieved
by a high-precision manipulator. The advantage is that the
resonance frequency can be much more precisely measured
than the vibration amplitude.

Bending and Curvature Falvo et al. [156] used AFM in
contact mode to manipulate and bend a MWCNT resting on
a substrate with the assistance of a nanomanipulator. The
AFM tip was used to apply lateral force at locations along
the tube to produce translation and bending. One end of
the nanotube was pinned to the substrate by e-beam carbon
deposition. After the bending, some of the deformed nano-
tubes were fixed by the friction between the nanotubes and
the substrate and some returned to the undeformed config-
uration. Falvo et al. [157] applied this method to investigate
the rolling and sliding behaviors of nanotubes.
Wong et al. [152] measured Young’s modulus, strength,

and toughness of MWCNTs by using AFM in lateral force
mode (Fig. 31). In their method, nanotubes were dispersed
randomly on a flat surface and pinned to this substrate by
means of microfabricated patches. Then AFM was used to
bend the cantilevered nanotubes transversely. At a certain
location �x� along the length of each nanotube, the force
versus deflection (F –d) curve was recorded to obtain the
spring constant of the system. Multiple F –d curves were

Figure 31. Overview of the approach used to probe mechanical proper-
ties of NRs and nanotubes. Reprinted with permission from [152], E. W.
Wong et al., Science 277, 1971 (1997). © 1997, American Association
for the Advancement of Science.

recorded at various locations along the nanotube. Single
crystal MoS2 was used as the substrate due to its low friction
coefficient. By modeling the nanotube as a beam, the F –d
data acquired by this method were used to estimate Young’s
modulus. In Figure 31e, the response of a beam to a force P
applied at a distance a (along the x axis) from the fixed point
�x = 0� is schematically illustrated. The governing equation
for the elastic curve is

EI
d4y

dx4
= −f + P'�x − a� (24)

where y is the deflection, I is the moment of inertia of the
nanotube, and f is the friction force between nanotube and
substrate. This term was considered small and omitted in the
analysis. By integrating this equation and defining the spring
constant at position x as k�x� = dP/dy, one can express it
in terms of Young’s modulus and tube geometry, viz.,

k�x� = 3�r4

4x3
E (25)

where �r4/4 is the moment of inertia for a solid cylinder of
radius r .
Bending of nanotubes resting on a substrate is straight-

forward to implement. Nevertheless, it cannot eliminate the
effect of adhesion and friction from the substrate. To solve
the friction issue, Walters et al. [186] suspended the nano-
tube over a microfabricated trench and bent the nanotube
repeatedly in lateral force mode. Salvetat et al. [187, 188]
introduced a similar method to measure Young’s modu-
lus of SWCNTs and MWCNTs. The nanotubes were dis-
persed in ethanol and a droplet was deposited on a com-
mercially available alumina ultrafiltration membrane with
200 nm pores (Whatman Anodics). Some nanotubes were
suspended over the pores. The adhesion between the nano-
tubes and the membrane was found sufficiently strong, so
that the nanotubes were effectively clamped. Using AFM
in contact mode, the authors applied vertical load to the
suspended nanotubes and recorded the force and deflec-
tion simultaneously. In this case, the nanotubes behaved like
clamped beams subjected to a concentrated load.

Radial Compression Shen et al. [154] performed an
indentation test on MWCNTs using AFM. After separating
the overlapped nanotubes using AFM in indentation/scratch
mode, the authors used AFM in tapping mode to scan the
tubes and selected a well-shaped tube to perform further
testing. The sample stage was lifted against the AFM tip.
After the tube made contact with the tip, the AFM can-
tilever was bent and the tube was compressed. The can-
tilever bending changed the position of the laser spot on the
four-quadrant photodectector and thereby produced a volt-
age signal proportional to it. When the signal reached a trig-
ger value, the sample was retracted. The radial compression
was obtained from the stage motion and cantilever deflec-
tion, and the force was calculated using the known spring
constant of the AFM cantilever and its deflection. In sum-
mary, Shen et al. actually squeezed the nanotubes by moving
them against the AFM cantilever, similar to nanoindenta-
tion. However, to study the same problem with the same
tool, Yu et al. [181] took a different strategy. They com-
pressed the nanotubes by AFM while imaging the nanotubes
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in tapping mode. In tapping-mode AFM, the cantilever was
oscillated with amplitude A0 above the surface. When scan-
ning the sample, the tip struck the sample at the bottom of
each oscillation cycle. Such intermittent contacts lead to a
decrease of cantilever amplitude of value A. The set point
S was defined as the ratio of A/A0. From the value of the
set point, the authors deduced the contact force.

Tensile Testing Tensile testing is the most widely used
technique in macro- and microscale material characteriza-
tion. In the testing of nano-objects, gripping and measuring
force–displacement signatures is a major challenge. Direct
stretch testing of nanotubes is hard to perform; however,
ingenious experiments have been carried out.
Pan et al. [189] used a stress–strain rig to pull a very

long (∼2 mm) MWCNT rope containing tens of thou-
sands of parallel tubes. They reported Young’s modulus
and tensile strength for this very long MWCNT. Yu et al.
[164] conducted an in-situ SEM tensile testing of MWCNTs
with the aid of a SEM nanomanipulator (Fig. 32). A sin-
gle nanotube was clamped to the AFM tips by localized
electron beam induced deposition of carbonaceous material
inside the SEM chamber. The experiment setup consisted
of three parts: a soft AFM probe (force constant less than
0.1 N/m) as a load sensor, a rigid AFM probe as an actuator,
which was driven by a linear picomotor, and the nanotubes
mounted between two AFM tips. Following the motion of
the rigid cantilever, the soft cantilever was bent by the ten-
sile load, equal to the force applied on the nanotube. The
nanotube deformation was recorded by SEM imaging, and
the force was measured by recording the deflection of the
soft cantilever. The force–displacement signature was then
converted to stress versus strain data, allowing modulus and
strength of the MWCNTs to be measured. Yu et al. [296,
297] applied the same method to investigate the mechanical
properties of ropes of SWCNTs, and the intershell friction
of MWCNTs.
Cumings and Zettl [175] accomplished an in-situ TEM

tensile testing of MWCNTs with the configuration shown

Figure 32. An individual MWNT mounted between two opposing AFM
tips and stretched uniaxially by moving one tip. Reprinted with per-
mission from [164], R. H. Baughman et al., Science 297, 787 (2002).
© 2000, American Association for the Advancement of Science.

Figure 33. Schematic representation of the intershell experiments
performed inside a TEM. Reprinted with permission from [175], J.
Comings and A. Zettl, Science 289, 602 (2000). © 2000, American Asso-
ciation for the Advancement of Science.

schematically in Figure 33. A MWCNT was fixed at one end
(Fig. 33a) and nanomachined at the other end to expose
the inner tubes (Fig. 33b). A nanomanipulator was brought
into contact with the core tubes and was spot-welded to the
core by means of a short, controlled electrical current pulse
(Fig. 33c). In Figure 33d and e two deformation modes are
illustrated. In Figure 33d, the manipulator was moved right
and left, thus telescoping the core out from or reinserting
it into the outer housing of nanotube shells. The extrac-
tion and reinsertion process was repeated many times while
being viewed at high TEM resolution to examine for atomic-
scale nanotube surface wear and fatigue. In Figure 33e, the
manipulator first telescoped the inner core out, then fully
disengaged, which allowed the core to be drawn back into
the outer shells by the intertube van der Waals force, conse-
quently lowering the total system energy. A real-time video
recording of the core bundle dynamics gave information per-
taining to van der Waals and frictional forces between the
tube shells.

Torsional Testing Williams et al. [153] recently intro-
duced a microfabricated device which offers the capability to
conduct torsion tests (Fig. 34). They used an advanced fab-
rication technique to make this task possible. They started
with depositing metal pads by photolithography. Then, align-
ment marks were deposited on a substrate by EBL and
lift-off. The dispersion of MWCNTs onto the surface fol-
lowed. SEM images were taken to help determine accu-
rate locations of the paddles. Then the underlying silicon
oxide was etched to suspend the paddles. The suspended
paddles were deflected with an AFM installed inside the
SEM. The AFM/SEM setup allowed direct measurements
of the applied force and the paddle deflection. Assuming
there is no bending, one could calculate the torque and
the corresponding rotation of the nanotube. This is an orig-
inal method to perform torsion test of nanotubes. How-
ever, an apparent drawback is that the applied force by the
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Figure 34. (a) Photolithographically patterned leads and EBL-
patterned alignment marks (two crosshairs). (b) The same area with
patterned paddles; the scale bars in (a) and (b) correspond to 40 �m.
(c) The paddle touched the substrate due to the large curvature of the
undercut metal leads. (d) Residual stress in the metal film and imper-
fect adhesion caused the leads to lift off the substrate. (e) One end of
the paddle stuck to the substrate. (f) A Successfully suspended paddle.
The scale bars in (c)–(f) correspond to 2 �m. Reprinted with permis-
sion from [153], P. A. Williams et al., Appl. Phys. Lett. 82, 805 (2003).
© 2003, American Institute of Physics.

AFM introduces not only torsion but also bending of the
nanotube.

2.3. Frontiers in Nanoscale
Experimental Techniques

2.3.1. Limitations of Existing Techniques
Thin films have been studied with a variety of tech-
niques including nanoindentation [15], tensile testing on
millimeter and micrometer sized specimens [190–194], mem-
brane deflection experiments [36–39, 84, 119], and in-situ
high-resolution transmission electron microscopy (HRTEM)
[195]. These techniques provided insight on various size
scales including grain size effects and demonstrated that,
in the case of metals, below a characteristic grain size, a
transition occurs in the plastic deformation mechanism from
intragranular dislocation motion to grain boundary sliding
accompanied by substantial grain rotation and/or diffusion
of clusters of vacancies. For the case of gold films, a grain
size of 25 nm was identified as the characteristic size at
which the transition is observed [195]. It should be noted
that in-situ HRTEM findings are preliminary and that much
work lays ahead. Despite these important advances, one can
highlight the following limitations:

• In the case of nanoindentation and most microtensile
testing of small samples, the defects responsible for

the material deformation mechanisms are not imaged
at the nanoscale at various loading states. Postmortem
studies are conducted after unloading and further spec-
imen micromachining.

• In the case of in-situ HRTEM, the current loading
stages can only apply a prescribed displacement and
thus do not possess the capabilities for independently
measuring loads with adequate resolution. Hence the
observed deformations are not accurately correlated
with loading history. One exception is the MEMS-based
stage being developed by Haque and Saif [131, 132].

• In the case of functional or intelligent materials, the
current experimental setups do not have the elec-
trodes and architecture needed for investigating elec-
trical properties under stress (i.e., electromechanical
coupling).

Single walled and multiwalled carbon nanotubes have
been studied experimentally by means of AFM, SEM, and
TEM. A major issue in all of these studies is the scatter
of the data. For instance Young’s modulus may present
a scatter of more than 100%; failure strains are much
smaller than the strain predicted by means of MD calcu-
lations [44]. The mechanics community has a special inter-
est in assessing possible sources of errors and limitations
of developed techniques. Among the most obvious, one can
mention:

• They do not directly and independently measure load
and deformation, as is the case in larger scale exper-
iments. In fact, beam or string mechanics is used to
infer local deformations.

• They assume homogeneous deformations because they
cannot identify CNT atomic defects and monitor their
evolution.

• Some use the same AFM tip to image and load the
CNTs. As a result, imaging under loading is not possi-
ble.

• They cannot sense local deformations at attachment or
loading points and therefore premature failure due to
local deformations is not identified nor quantified.

• Most experimental configurations cannot measure
specimen electronic properties under well-defined load-
ing conditions.

New measurement tools, which can be integrated into
high-resolution imaging instruments, are necessary in order
to make further advances in the mechanics of CNTs, NWs,
single crystal films, and polycrystalline films. MEMS tech-
nology offers unique features such as generation of micro-
Newton load and nanometer displacement measurements
with high resolution. It also provides the means to bridge
size scales across several orders of magnitude as needed to
investigate nano-objects.

2.3.2. A Novel MEMS Approach for In-situ
Electron and Probe Microscopy

In order to overcome the aforementioned limitations,
Espinosa and co-workers [196, 197] developed a new exper-
imental setup for the testing of thin films, nanowires, and
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nanotubes. The setup is an integrated MEMS device consist-
ing of three well-defined components: an actuator, a spec-
imen, and load sensor; see Figures 35. For the testing of
thin films, the setup consists of a thermal actuator, a spec-
imen, and a load sensor based on differential capacitance
measurement. Thermal actuators have been used in the past
to produce up to several milli-Newton forces. In the device
shown in Figure 35a, a set of slanted beams connected to
a trunk provides the actuation when a current is circulated
between the fixed pads. Thermal expansion of the doped
polysilicon beams results in a displacement of the trunk and,
consequently, the loading of the sample [142]. The device
works in displacement control, which is very advantageous
in the study of thin films.
Sensors based on differential capacitance measurements

are well established (e.g., Analog Devices’ and Motorola’s
MEMS accelerometers). In this approach, the differential
capacitor serves as a load sensor upon proper calibration.
A readout chip, manufactured by Microsensors Co. [198],
is being employed to measure differential capacitance with
femtofarad resolution. The chip suppresses parasitic capac-
itance and provides adjustable internal capacitors to select
range and resolution. Here the concept of a two-chip sys-
tem, a MEMS chip for sample loading and another com-
plementary metal oxide semiconductor chip for capacitance
measurement, is employed; see Figure 35c. The movement
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Figure 35. (a) MEMS device for in-situ AFM/SEM/TEM electrome-
chanical characterization of polycrystalline nanoaggregates films. The
whole system can fit in a 3 mm× 3 mm area. (b) Lumped model of the
device shown in (a), where XS is the deformation of the specimen, XL

is the displacement of the load sensor, XT is the displacement of the
thermal actuator, KS is the stiffness of the specimen, KL is the stiffness
of the load sensor, KT the stiffness of the thermal actuator, and F is the
total force generated by the thermal actuator. (c) Two-chip architecture
used for measuring the load.

of the movable electrode is equal to the deformation of the
folded beams in the axial direction. Capacitance change is
proportional to the displacement of the movable electrode
when such displacement is sufficiently small [198]. If a volt-
age bias V0 is applied on each fixed electrode there will be
a voltage change in the moving electrode, Vsense, given as

Vsense
V0

= %d

d
+ o

(
%d

d

)3
(26)

where d is the gap between movable and fixed electrodes,
%d is the movable electrode displacement in the axial direc-
tion, and V0 is the bias voltage. If %d is much smaller than
the gap d, Vsense is proportional to %d. When the spring con-
stant of the folded beams is characterized, the force applied
on the load cell is proportional to Vsense. Measurements of
specimen deformation are achieved by in-situ microscopy.
Direct measurement of local displacements and strains is
very important. It is known that peculiarities observed in
the elastic, plastic, fracture, and transport properties of thin
films are directly related to atomic structure and associated
defects. This point is addressed further later.
The lumped model of this device is shown in Figure 35b.

Compatibility and equilibrium equations are also given in
the figure. To illustrate the approach, tensile testing of
polysilicon film can be examined as an example for design
purposes. Considering the failure strain of polysilicon is
about 1% [117], the required force from the thermal actu-
ator to break the polysilicon specimen was calculated. The
structure of the thermal actuator (e.g., number of slanted
beams and geometry of each beam) was then designed after
thermal analysis [199, 302]. These estimates were also ver-
ified using ANSYS multiphysics (from ANSYS Inc.). They
show that the polysilicon specimen can be deformed to fail-
ure and that the resolution of a differential plate capacitor
can be used to measure the load sensor motion.
For the case of CNT testing, the experimental setup is

similar to that of thin film testing. One difference is that a
comb-drive actuator is used (force control) instead of a ther-
mal actuator (Fig. 36). The force to break a CNT is only sev-
eral micro-Newtons, which can be achieved by a comb-drive
actuator. A comb-drive actuator can accommodate a sev-
eral micrometers motion range, which is required to study
the nanotribological behavior of MWCNTs after the outside
shell failure. Due to the limitation in space we do not pro-
vide all the details of the lumped model analysis for this
device; however, we just mention that the analysis is very
similar to one previously discussed for the thermal actuator.
The 3D nanomanipulator shown in Figure 37 is used to

mount the nanosize specimen between the comb-drive actu-
ator and the capacitive load sensor (Fig. 36). Several imag-
ing tools are employed to measure specimen deformation
and to identify defect initiation and evolution. In the next
section, we report displacement measurement performed by
DIC of AFM images obtained at various deformation levels.

2.3.3. In-situ AFM Results
Using the MEMS device shown in Figure 35, testing of
polysilicon thin films with in-situ AFM displacement and
strain measurements of the specimens was performed. AFM
was employed to scan the specimen surface before and after
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Figure 36. MEMS actuator for in-situ SEM/TEM/STM electromechan-
ical characterization of carbon nanotubes. Various configurations will be
investigated. The dimensions of the device will be such that the chip will
fit in a TEM holder. Actuation and sensing pads will be wire bonded
to a small breadboard and from there will be wired through the TEM
holder feedthrough (see bottom image).

the loading. DIC was then used to process the AFM data
to quantify the displacement/strain field. Figure 38a and b
shows two AFM images of the specimen before and after
loading [196, 197]. The first image was obtained before
the application of a voltage to the thermal actuator, while
the second image was obtained when a 5 V was applied.
Figure 38c shows the displacement field obtained using DIC
for a scanned area of 8 �m× 2 �m. The displacement con-
tours show that the thermal actuator symmetrically stretched
the specimen, in the x-direction, as expected. Moreover, the
planarity of the device was investigated with an optical sur-
face profiler and it turned out that the device was flat and
parallel to the substrate within 40 nm.

Figure 37. Klocke Nanotechnik nanomanipulator within a LEO field-
emission SEM [159].

(a)

(b)

(c)

Figure 38. (a) AFM image of the topography of the specimen surface
before loading. (b) AFM image during the loading. (c) Displacement
contour computed by DIC within the area shown in (a) and (b). The
load was applied in the x-direction. Reprinted with permission from
[197], Y. Zhu et al., in “Proc. SEM Ann. Conf. Exper. Appl. Mech.,”
2003. © 2003, Society for Experimental Mechanics, Inc.

2.3.4. Opportunities in Nanomechanical
Imaging of Deformation

In this section we summarize efforts underway to elucidate
deformation and failure mechanisms in thin films, nano-
wires, and nanotubes. Special emphasis is placed on tech-
niques that are being used in conjunction with the MEMS
setup discussed in the previous section.
In the investigation of thin films, extensive in-situ TEM

work is essential to reveal the material behavior under stress
at the grain level. Diffraction contrast and convergent beam
electron diffraction at and around defects, with a beam
diameter of a few angstroms, can be used to obtain lattice
parameters and strain under load on ultrathin specimens.
Higher order Laue zone line patterns can be compared to
computer simulations of the deformed grains for this pur-
pose. A critical aspect is the identification of dislocation
sources and their densities, which are commonly assumed in
atomistic, discrete dislocation, and other models.
Other TEM techniques such as weak-beam dark-field

microscopy and Moire patterns for defect characterization
are also possible. These techniques enhance the observa-
tion of defects such as dislocations, twins, and stacking
faults on real space in real time. This effort is particularly
relevant to assess the effectiveness of atomistic models in
capturing defect distribution, annihilation, interaction with
grain boundaries, and free surfaces. Defects sources, density,
speed, and its relationship to material nanostructure and
composition can also be quantified through this approach.
Moreover, the onset of inelasticity and fracture characteri-
zation at the atomic level is also possible.
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Stack and collaborators [161, 200, 201] have performed
in-situ nanoindentation TEM studies by employing a TEM
holder containing a piezo-actuator and a specially microfab-
ricated wedge-shaped specimen. Observations of film defor-
mation and nucleation of dislocations were observed in real
time. Unfortunately, due to the hysterisis of the piezo-
actuator and other experimental limitations, quantitative
measurements of force–displacement were not possible. The
MEMS device shown in Figure 36 may be one approach to
overcome this limitation. Here the specimen is integrated
to the load sensor during the microfabrication steps and a
sharp indenter (e.g., a CNT) is mounted to the trunk of
the MEMS thermal actuator using a 3D nanomanipulator
(Klocke Nanotechnik Co.); see Figure 37. This 3D nanoma-
nipulator has already been implemented for in-situ SEM
site-specific nanowelding of carbon and other nanostructures
[159].
Currently, the best TEM in the world has a point-to-

point resolution of about 1 angstrom. It is anticipated that
transmission electron microscopes will reach a resolution
of subangstrom in the next few years by means of spheri-
cal and achromatic aberration corrections. This will make
feasible the identification of interatomic potentials through
atomic imaging of crystal planes. Using the device shown
before, experiments performed on single crystal and bicrys-
tal specimens could be employed to identify the interatomic
potentials used in atomistic and molecular dynamic simu-
lations. For particular crystal orientations, selected a priori,
the atomic displacement field around a dislocation core or
an interface could be mapped. HRTEM images of the crys-
tal structure can be interpreted using software based on fast
Fourier transform formalism and other approaches [202–
204]. A cross-correlation technique can be used to assess the
accuracy of the simulated images. This work would certainly
constitute a milestone in materials research.
For the study of nanotubes and nanowires, TEM can

provide information on chirality and other structural fea-
ture [205] but is unlikely to provide atomic images from
which deformations can be computed. By contrast, ultravac-
uum STM has been successfully employed to obtain atomic
images of CNTs [182, 183]. It remains to be determined if
this imaging capability could be performed in combination
with the MEMS device presented here. Capturing atomic
structure under various loading degrees would be the ulti-
mate goal in these studies.
Electromechanical properties of CNTs are of particular

interest due to their potential in NEMS. Previous work by
Tombler et al. [206] has shown that the conductivity of CNTs
can change by several orders of magnitude when deformed
by an AFM tip. The MEMS setup shown in Figure 36
has embedded interconnects and pads for electromechan-
ical characterization of nanotubes under loading. By con-
necting the sensing pads to a signal analyzer, the electrical
conductance can be measured under stress. Likewise, for the
case of MWCNTs, sliding forces between outer and inner
shells can be measured upon outer shell fracture. Therefore,
on-chip nanoscale tribological properties can be identified
with subnano-Newton force resolution and subnanometer
displacement resolution. The main difference between pre-
vious work and the experimental approach here discussed is

that forces and atomic displacement are measured indepen-
dently and directly.

3. MICRO- AND NANOSCALE
MEASURED MATERIAL
PROPERTIES

Thin films have long been harvested by the microelectron-
ics industry for their unique properties. Conventional think-
ing has usually categorized their electrical properties as the
property of primary importance. In the past decade and a
half though, other nonelectronic, chemical and mechanical
properties have also been found to have great significance
[15, 93]. Mechanical properties, in particular, are critical
when one is concerned with the fact that devices must have
structural integrity and also be reliable throughout their life
expectancy.
Thin film materials that are widely used in microdevices

include metallic, silicon-based, and carbon-based substances.
As diverse as these materials are in the atoms that com-
pose them so are their properties. Processing techniques and
parameters for films are numerous and directly affect the
film microstructure. It is not surprising then that films of the
same material that are processed by different methods can
have widely varying properties. The methods employed to
measure the properties listed in this section also vary signif-
icantly and therefore so do data values as well.
This section is designed to introduce the reader to thin

film properties that have been measured thus far. No con-
trasts or categorizations are made to separate how process-
ing or test methods affect the measured data in most cases.
The scientific community has not yet come to a consen-
sus on a uniform testing and characterization methodology
by which measurements can be made and classified in a
uniform and reproducible manner. Much work lies ahead
before thin film behaviors, such as size effects, are fully
understood and before theories capable of predicting behav-
ior are developed. It should be noted that a number of
the references garnered for this section have been previ-
ously collected in a review by Sharpe [207] and readers are
directed there for additional citations.

3.1. Metallic Materials

Metallic materials serve many engineering functions in
microdevices including both electrical and mechanical com-
ponents. Metals display a wide range of mechanical behavior
including elasticity, plasticity, creep, fatigue, and fracture.
Only in recent years has the mechanical behavior of thin
film metals become of concern in the design of microdevices.
Metal films have been found to be susceptible to electro-
migration and other diffusion driven processes, stress and
defect formation due to thermal effects, and changes in elec-
trical behavior due to straining. These processes have dele-
terious effects that often lead to device failure.
The more popular metals used in microdevices include

gold, aluminum, copper, and nickel. These materials are
mainly deposited by sputtering or electron-beam evapora-
tion, processes that contain numerous parameters directly
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affecting microstructure. They are normally in polycrys-
talline form with grain size on the order of film thick-
ness. They typically possess significant textures. Table 3
lists properties for the metals listed. With the exception of
Au, Young’s modulus of thin films mostly agrees with bulk
polycrystalline values. Several materials showed increases in
yield stress as specimen size decreased, as was previously
shown for Au in Figure 5. In general, the yielding behavior
of thin films tends to require larger stresses than their bulk
counterparts. This is a topic of high interest to researchers
and is currently a major research thrust toward the devel-
opment of theories and models that can accurately predict
their behavior.

3.2. Silicon-Based Materials

Most materials used in microdevices are silicon-based, which
typically exhibit linear elastic behavior followed by brittle
fracture. Silicon and silicon-based materials have been the
dominant materials in the microelectronics revolution of
the 20th century and the precursor to the microelectrome-
chanical/nanoelectromechanical systems revolution currently
underway. It has been the material of choice for current
MEMS devices, mainly because devices can be fashioned
using standard microfabrication techniques [215, 216]. The
materials discussed in this section include single crystal sil-
icon, polycrystalline silicon, silicon dioxide, silicon carbide,
and silicon nitride.
Single crystal silicon has been a vehicle for the fabrication

of microelectronics for several decades. It also serves as the
most common structural material used in MEMS. Its electri-
cal properties have been well characterized over the years;
however, the mechanical properties, such as fatigue and frac-
ture toughness, have only recently begun to be tackled. The
mechanical properties measured thus far have been shown to
be dependent on the micromachining process utilized to pre-
pare specimens and their resulting surface conditions. The
techniques employed to test single crystal specimens have
been diverse and include many of the methods listed in the

Table 3. Summary of data on thin film metals.

Young’s modulus Yield strength Tensile strength
Material (GPa) (GPa) (GPa) Method Ref.

Au-size effect 53–55 0.055–0.220 0.78–0.35 MDE [36, 38]
Au 40–80 — 0.2–0.4 tension [2]
Au 74 0.26 — indentation [77, 208]
Au 57 — — bending [77, 208]

Al-size effect 65–70 0.150–0.180 0.240–0.375 MDE [36]
Al 24.2–30.0 0.087–0.105 0.124–0.176 tension [209]
Al 69 — — tension [128]
Al 69–85 — — bending [210]

Cu-size effect 125–129 0.200–0.345 0.45–0.80 MDE [36]
Cu-size effect 120–132 0.120–0.480 tension [211]
Cu 86–173 0.12–0.24 0.33–0.38 tension [212]
Cu 108–145 — — indentation [212]

Ni-thick 176± 30 0�32 ± 0�03 0.55 tension [114]
Ni-thin 231± 12 1�55± 05 2�47± 0�07 tension [213]
Ni-LIGA 181± 36 0�33± 0�03 0�44± 0�04 tension [214]
Ni 156± 9 0�44± 0�03 — tension [212]

MDE = membrane deflection experiment.

previous section. Table 4 provides a compilation of some
results achieved over the past several years. Most of these
results, in terms of Young’s modulus, agree well with estab-
lished benchmark values. Fracture strength varies consider-
ably and is governed by the orientation of the crystal as well
as the surface features particular to each micromachining
process [217].
Polycrystalline silicon has become a commonly employed

material in microdevices. It is normally employed as the
structural part of the device due to its high melting point,
ease of growth and micromachineability, and somewhat
favorable mechanical behavior [219]. It also has the dis-
tinction of having appreciable piezoresistive behavior for
the transduction of deflection or other electromechanical
coupled variables. Polysilicon has been the focus of more
thin film micromechanical properties measurements than
any other material thus far. Table 5 lists the results from
recent studies. A more complete list of experimental reports
can be found in [207].
For the most part, it can be said that Young’s modulus

varies moderately between techniques. The same can be said
for fracture strength when considering that it is a function
of the surface flaws present. The effect of specimen size on
fracture strength was extensively studied by Sharpe et al.
[229] and Tsuchiya et al. [122]. These pioneering studies
were able to show that as specimen size decreased, trans-
lating to a reduction in surface area, the fracture strength
increased due to a lower population of surface flaws.
Silicon Oxide (SiO2), nitride (Si3N4), and carbide (SiC),

and combinations thereof, are silicon-based materials of
growing importance in microdevices. They are less common
than single or polycrystalline silicon as structural compo-
nents due to residual stresses that develop during processing.
Silicon dioxide and silicon nitride are commonly used as sac-
rificial layers, etch stops, or electrical/environmental passiva-
tion layers. Silicon nitride and silicon carbide are extensively
used to make membranes for micropumps, pressure sen-
sors, support for X-ray masks, etc. Table 6 lists a summary
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Table 4. Summary of data on single crystal silicon.

Young’s modulus Fracture strength
Direction (GPa) (GPa) Method Ref.

�100�, �110�, �111� 130, 170, 185 — benchmark [86]
�100� 168 — indentation [218]
�100� (doped Si) 60–200 — indentation [151, 219]
�110� 163–188 3.4 indentation, MCD [208]
�110� 166–168 — MCD [84, 85]
�110� 177± 18 2.0–4.3 bending [220]
�110� (different fab.) — 1.0–6.8 tension [125]
�111�, �110� — 1.3, 2.3 tension [221]
�110� — 1.2 tension [222]
�110� 150 0.3 tension [223]
�110� 147 0.26–0.82 tension [224]
�100�, �110�, �111� 125–180 1.3–2.1 tension [225]
�100� 142 ± 9 1.73 tension [213]
�110� 169�2 ± 3�5 0.6–1.2 tension [226]
�100�, �110�, �111� 115–191 — tension [121]
�110� — 8.5–20 torsion [227]

75 (shear) — torsion [228]

MCD = microcantilever deflection.

of properties measured thus far. Silicon nitride and carbide
both show future potential as mechanical components for
microdevices due to their high Young’s modulus. However,
more extensive studies are required to understand how their
thin film structure affects fracture strength, etc.

3.3. Carbon-Based Materials

Carbon in its various forms may become a key material for
the manufacturing of MEMS/NEMS devices in the 21st cen-
tury and will most probably displace silicon-based materials
in devices. Carbon materials have exceptional and tailorable
properties with the potential to meet the stringent demands
that MEMS/NEMS devices and other thin film applications
require. These include UNCD, diamond-like carbon, amor-
phous diamond, and carbon nanotubes. To date, the aggre-
gate of testing performed on these materials is preliminary
and much work is needed to confirm property measurements
and comprehend their meaning.
Table 7 summarizes the current data on thin film dia-

mond materials. The data are separated into four groups

Table 5. Summary of data on polysilicon.

Young’s Fracture
modulus strength
(GPa) (GPa) Method Ref.

MUMPs21 136–174 1.3–2.8 tensile [112]
MUMPs19 132 — tensile [112]
Stress concentrations — 1.3–1.5 tensile [230]
Size effect 154.1–159.6 1.51–1.67 tensile [229]
Size effect—doped — 2.0–2.8 tensile [122]
Microcantilever 174± 20 2�8± 0�5 bending [231]
AFM deflection 173± 10 2�6± 0�4 bending [232]
Bulk 181–203 — indentation [219]
Doped–undoped 95–175 — indentation [233]

that include ultrananocrystalline diamond, nanograined dia-
mond, micrograined diamond, and diamond-like carbon.
Each of these materials is fabricated using varying pro-
cessing schemes to achieve their microstructures with the
resulting mechanical behavior being a function of these pro-
cesses, microstructures, and bonding characteristics. Dia-
mond materials typically have large elastic moduli reflective
of their strong cohesive binding and, being brittle in nature,
fail by means of crack propagation initiated at flaw sites. The
UNCD and micro- and nanograined materials all yield large
elastic moduli since they are composed of crystalline grains.
Diamond-like carbon is described as having an amorphous
structure consisting of a mixture of sp2 and sp3 bonding from
both graphite and diamond bonding and therefore possess-
ing a lower elastic modulus.
Fracture strength has only recently been measured; results

are listed in Table 7. It varies from 0.55 to 5.03 GPa depend-
ing on the type of material and testing technique. A typ-
ical stress–strain result for a UNCD specimen is given in
Figure 39. In the gauge region, the specimen was 10 �m
wide and 0.5 �m thick. The membrane deflection experi-
ment described in Section 4 was employed. The stress–strain
response of the specimen increases in a linear fashion until

Table 6. Summary of data on silicon-based materials.

Young’s Fracture
modulus strength

Material (GPa) (GPa) Method Ref.

SiO2 — 0.6–1.9 tension [234]
SiO2 83 — bending [77]
SiO2 64 0.6 indentation [77]
Si3N4 222 ± 3 — bulge [105]
Si3N4 216± 10 — indentation [105]
SiC 470± 10 — bending [235]
SiC 395 — indentation [236]
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Table 7. Summary of data on thin film carbon-based materials.

Young’s modulus Fracture strength
Material (GPa) (GPa) Method Ref.

UNCD (nanoseeded) 945–963 3.95–5.03 MDE [84]
UNCD (microseeded) 930–970 0.89–2.42 MDE [84]
UNCD 916–959 — MCD [84]
UNCD 960 — nanoindentation [237]

Nanograined diamond 910–1150 — nanoindentation [238]
Nanograined diamond 675–765 — indentation [239]
Nanograined diamond 510 — laser-acoustic [240]

Micrograined diamond 1250 — nanoindentation [241]
Micrograined diamond 1155–1207 — nanoindentation [242]
Micrograined diamond 1000 — indentation [243]
Micrograined diamond 884–940 — indentation [239]
Micrograined diamond 830 2.72 MCD [244]
Micrograined diamond — 0.55–0.82 mode I [245, 246]

Diamond-like carbon 800 0.7 nanoindentation [247, 248]
Diamond-like carbon 700 — laser-acoustic [249]
Diamond-like carbon — 0.8–1.0 three-point bend [250]
Diamond-like carbon 260 — indentation [251]
Diamond-like carbon 60–145 — nanoindentation [252]

failure at 5.03 GPa. The slope of the plot represents the
elastic modulus and was found to be 949 GPa.
It should also be mentioned that Table 7 contains data

for a limited number of specimens of varying size and pro-
cessing schemes and therefore effects of flaw size in relation
to specimen size and processing are not defined. Fracture
strengths of 0.7 to 5.03 GPa have been measured for UNCD
films with the nanoseeded UNCD yielding by far the highest
tensile strength [84, 85, 127].
Espinosa and co-workers have also interpreted the

strength of UNCD based on Weibull statistics [127]. They
showed that the Weibull parameters are highly dependent
on the seeding process used in the growth of the films. When
seeding was performed with micrometer size diamond par-
ticles, using mechanical polishing, the stress resulting in a
probability of failure of 63% was found to be 1.74 GPa, and
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Figure 39. Stress–strain curve representative of a typical UNCD MDE
sample. An elastic modulus of 949 GPa, fracture stress of 5.03 GPa, and
an estimated initial stress of 100 MPa were identified. Reprinted with
permission from [84], B. C. Prorok et al., Exp. Mech. (2003). © 2003,
Society for Experimental Mechanics.

the Weibull modulus was 5.74. By contrast, when seeding
was performed with nanosize diamond particles, using ultra-
sonic agitation, the stress resulting in a probability of failure
of 63% increased to 4.13 GPa and the Weibull modulus was
10.76. The investigation highlights the role of microfabrica-
tion defects on material properties and reliability, as a func-
tion of seeding technique, when identical MPCVD chemistry
is employed. This group is currently examining how strength
is affected when specimen size is reduced to a degree where
it becomes comparable to the flaw size. By employing the
new membrane deflection toughness experiment developed
by Espinosa and co-workers [127], the toughness of UNCD
was measured to be approximately 7 MPam1/2.
The results collected thus far demonstrate the significant

mechanical advantages that carbon-based films can provide
to MEMS/NEMS and their applications over other materi-
als, particularly when extrinsic flaws such as pores and sur-
face flaws can be further minimized and/or eliminated.
Clearly, much remains to be learned about the mechani-

cal behavior of thin film materials. Researchers in the field
must come to a consensus on a standard technique by which
properties can be measured in an accurate and repeatable
manner. Finally, the understanding of mechanisms involved
in microstructural and specimen size effects as well as frac-
ture and fatigue will allow the development of models capa-
ble of predicting film behavior.

3.3.1. Carbon Nanotubes
Most of the experimental techniques to date have been
reviewed in this chapter. All have been performed to char-
acterize the mechanical or related properties of carbon
nanotubes. This section lists in tabular form the results of
measurements of mechanical properties of MWCNTs and
SWCNTs with focus on Young’s modulus and strength. This
section is intended to provide the reader not only values of
mechanical properties but also the corresponding references
and test methods employed in their identification.
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Most of the experimental measurements were conducted
on MWCNTs and ropes of SWCNTs, with only one excep-
tion, that of Krishnan et al. [185] who measured Young’s
modulus of SWCNTs using the thermal resonance method.
There exists a wide range in the reported properties primar-
ily owing not only to different synthesis methods but also
to the various assumptions used in the calculations of stress
and strain.
Presently, there are several debatable issues related to the

interpretation of the data. One such issue is whether CNTs
behave more like a beam or a string. Most experiments have
modeled the nanotube as a beam and obtained the Young’s
modulus based on this assumption. A typical example is the
measurement done by Wong et al. [152], which correlated
the distance along the nanotube and corresponding force
constant. However, Walters et al. [186] argued that nano-
tubes behave as a string rather than a beam (Fig. 40).
Another contentious issue is whether there exists a rela-

tionship between nanotube diameter and Young’s modulus.
Poncharal et al. [160] and Salvetat et al. [187, 188] observed
that Young’s modulus decreases with increase in tube diame-
ter. In the experiment of Poncharal et al., increasing diameter
resulted in a sharp decrease of modulus. This decrease was
explained due to a wavelike distortion or ripple on the inner
arc of the bent nanotube for relatively thick nanotubes (Fig.
41). However, other measurements did not reveal a direct
relation between the Young’s modulus and tube diameter.
The existence and migration of buckles during the bend-

ing of nanotubes was observed by Falvo et al. [156]. The
raised points along the tube were interpreted as buckles
(Fig. 42), consistent with the increase in height as shown on
the right in Figure 42a. The location of the buckles shifted
dramatically, which can be seen from Figure 42b–c. The
buckles in (c) appeared in regions which had been feature-
less, and the buckles of (b) mainly disappeared. Table 8 sum-
marizes measured data on multiwalled carbon nanotubes.
In NEMS applications, it is essential to understand how

friction, wear, and lubrication effect the relative motion
of objects in contact. The tribology of carbon nanotubes
includes two parts: intershell friction and nanotube/substrate

Figure 40. Lateral force on SWCNT rope as a function of AFM tip
position. The four symbols represent data from four consecutive lateral
force curves on the same rope, showing that this rope is straining elas-
tically with no plastic deformation. Inset: the AFM tip moves along the
trench, in the plane of the surface, and displaces the rope as shown.
Reprinted with permission from [186], D. A. Walters et al., Appl. Phys.
Lett. 74, 3803 (1999). © 2003, American Institute of Physics.
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Figure 41. Elastic properties of nanotubes. (A) Eb as a function of
diameter: the dramatic drop in Eb for D ≈ 12 nm is attributed to the
onset of a wavelike distortion, which appears to be the energetically
favorable bending mode for thicker nanotubes. There is no remarkable
change in the Lorentzian line shape of the resonance (inset) for tubes
that have large or small moduli, although the low-modulus nanotubes
appear to be more damped than the high-modulus tube. (D) TEM
image of a bent nanotube showing the characteristic wavelike distor-
tion. (B) and (C) Magnified views of a portion of (D). Reprinted with
permission from [160], P. Poncharal et al., Science 283, 1513 (1999).
© 1999, American Association for the Advancement of Science.

friction. Yu et al. [164] pulled the outermost shell and mea-
sured the force due to outer shell/inner shell interaction
until the outermost shell broke. Cumings et al. [253] opened
the end of a MWCNT and exposed the core tubes. The
repeated extension and retraction of the core tubes against
the outer shell did not reveal any wear or fatigue. The
static friction force was estimated to be less than 6�6 ×
10−15 N/Å2 and the dynamic friction force was less than
4�3× 10−15 N/Å2.
Falvo et al. [157] studied the frictional behavior of a nano-

tube on two substrates: mica and graphite. On different
substrates, the nanotubes preferred either rolling or slid-
ing, depending on the pulling location. Figure 43 shows the
rolling process of a CNT on a graphene substrate and the
measured lateral force as a function of tip position.
The effect of mechanical deformation on the electrical

properties of CNTs is of particular interest owing to the
potential of CNTs in the development of nanoelectrome-
chanical systems. Paulson et al. [254] found that changes
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Figure 42. Curvature and height of buckles along a bent carbon nano-
tube. The white scale bar (in (a) represents 300 nm and all figures are
to the same scale. A 20-nm-diameter tube was manipulated from its
straight shape [(a), inset)] into several bent configurations (a)–(d). The
height and curvature of the bent tubes along its centerline [indicated
by the arrow in (a)] are shown in (e)–(h). The upper trace in each
graph depicts the height relative to the substrate; the lower trace depicts
the curvature data. Height values are relative to substrate height. The
“ripple”-like buckles migrate as the tube is manipulated into different
configurations. The appearance and disappearance of the ripple buck-
les, as well as the severe buckle at s ≈ 500 nm (e)–(f), suggest elastic
reversibility. The large buckle at s ≈ 325 nm (e), (f) retains its raised
topographical features even after straightening (g), (h), suggesting that
damage has occurred at this point; but the tube does not fracture. The
average of the buckle interval histogram [(d), inset)] and the average
of the Fourier transforms [(c), inset) for a wide range of bent config-
urations establish the dominant interval as 68 nm. Reprinted with per-
mission from [156], M. R. Falvo et al., Nature 389, 582 (1997). © 1997,
American Association for the Advancement of Science.

in nanotube resistance were small unless the nanotubes
fractured or the metal–nanotube contacts were perturbed.
However, Tombler et al. [206] succeeded in bending indi-
vidual SWNTs with an AFM tip and measuring conduc-
tance as a function of deflection. The study revealed that
the conductance of SWCNT changed dramatically under the
applied deformation. Figure 44 represents the schematic of
their experiment and measured values. Quantum mechanical
modeling was employed to verify and explain the experimen-
tal findings. The conclusion reached by the authors was that
interaction between the AFM tip and the SWCNT deformed
the nanotube to a point where the bonding in the nanotube
was converted from sp2 to sp3. However, in previous studies,
the nanotubes were more or less uniformly bent or strained;
hence, the chemical bonding evidently remained sp2.

Table 8. Multiwalled carbon nanotube.

Young’s
modulus Strength

Method (TPa) (GPa) Comments Ref.

Thermal vibration 1.8 — [184]
Electrostatic 0.1–1 — varies with [160]
vibration diameter

Lateral force 1�28± 0�59 14�2 ± 8�0 [152]
bending

Contact force 0�81+ 0�41 arc-discharge [188]
bending 0.81–0.16 MWCNT

Radial 0.0097–0.08 >5�3 compressive [154]
indentation modulus

and strength
Tensile test 0�45± 0�23 1�72 ± 0�64 very long [189]

MWCNT
Tensile test 0.27–0.95 11–63 outermost layer [164]
Torsion test 0.6a [153]

a Shear modulus G.

Figure 43. Rolling behavior of CNTs on the graphene substrate (a)–(f)
as it is manipulated from left to right. The tube is imaged before and
after each of the five manipulations. The insets between each topo-
graphical image show the lateral force during each manipulation. The
tube is moving from left to right, not gradually but in sudden slips in a
stick–slip type rolling motion. In (g), three overlapped signals from sep-
arate rolling trials are shown for the lateral force as the tube is pushed
through several revolutions of stick–slip rolling motion. The features of
the force traces are reproducible. The 85 nm periodicity in the signal,
indicated by the dashed lines, is equal to the circumference of the tube
at its ends. Reprinted with permission from [157], M. R. Falvo et al.,
Nature 397, 236 (1999). © 1999, Macmillan Publishers Ltd.
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Figure 44. Bending of SWCNT by an AFM tip and the corresponding
electrical conductance evolution. (a) Top view of an SWCNT partly
suspended over a trench for electromechanical measurements; (b) AFM
image of an SWCNT with suspended length l ≈ 605 nm; (c) Side view
of the AFM pushing suspended SWCNT. (d)–(f) cantilever deflection
and nanotube electrical conductance evolution during repeated cycles
of pushing the suspended SWCNT. $ is the tube bent angle. Initial tip–
tube distance is 65 (d), 30 (e), and 8 nm (f), and the speed of the tip
motion was about 22 (d), 34 (e), and 44 nm/s (f). It is seen that the
conductance of an SWCNT is reduced by two orders of magnitude when
deformed by an AFM. Reprinted with permission from [206], T. W.
Tombler et al., Nature 405, 769 (2000). © 2000, Macmillan Publishers
Ltd.

4. THEORETICAL MODELING
AND SCALING

During the 1980s and 1990s, a host of experiments on the
micrometer and submicrometer scale, including microinden-
tation [15], microtorsion [29, 30], and microbending [28],
revealed a strong size effect on the yield strength and hard-
ening of metals. Similar size effects were observed also
in metal matrix composites with particle diameters in the
micrometer and submicrometer scale [255, 256]. The clas-
sical plasticity theories cannot predict these size effects
because they involve no material characteristic length. To
explain them, several strain gradient theories were devel-
oped. The first one was a phenomenological theory by Fleck
and Hutchinson [30] based on the existence of a poten-
tial. This theory was later extended and improved in several
versions [31, 257, 258] while retaining the same basic struc-
ture. Another strain gradient theory which received consid-
erable attention was the mechanism-based strain-gradient

(MSG) theory [33, 35] derived under certain simplifying
assumptions from the concept of geometrically necessary
dislocations. Based on numerical experience, this theory was
recently improved as the Taylor-base nonlocal (TNT) theory
[259], and the improvement consisting in the form of strain
gradient dependence of the hardening function made the
theory conform to a revision proposed by Bažant [260, 261]
on the basis of scaling analysis. Another noteworthy theory
was the Acharya and Bassani strain gradient plasticity the-
ory based on the idea of lattice incompatibility [262, 263],
which represented a generalization of the incremental the-
ory of plasticity. The asymptotic characters of these strain
gradient theories were analyzed recently and it was found
that the small-size asymptotic size effect predicted by some
of the theories is excessive and unreasonable [259–261].
It might seem that the small-size asymptotic behavior of

gradient plasticity is irrelevant because it is approached only
at sizes below the range of validity of theory, for which the
spacing of the geometrically necessary dislocations (about 10
to 100 nm) and the crystal size are not negligible, and other
physical phenomena, such as surface tension, gradation of
crystal size, and texture, intervene. However, knowledge of
both the small-size and large-size asymptotics is very use-
ful for developing asymptotic matching approximations for
the intermediate range, for which the solutions are much
harder to obtain. For the purpose of asymptotic matching,
the asymptotic behavior must be physically reasonable even
if attained outside the range of validity of the theory (this
has been demonstrated in the modeling of cohesive fracture
when the small-size plastic asymptote is often approached
only for specimen sizes much smaller than the inhomogene-
ity size, e.g., the aggregate size in concrete [260]).
The present chapter reviews and summarizes several

recent papers in which it was shown that the main theories
proposed in the past, including couple stress theory, stress
and rotation gradient theory, MSG, TNT, and the Acharya
and Bassani theory, suffer from excessive asymptotic size
effect and some exhibit an unrealistic shape of the load-
deflection curve. Simple adjustments of all these theories
suffice to achieve reasonable asymptotic behavior and thus
to make asymptotic matching approximations feasible.
The main strain gradient theories will be briefly intro-

duced and their asymptotic analysis presented by Bažant and
Guo [264] will be outlined. After that, a simple asymptotic-
matching approximation, suitable for predictions of yield
limit and plastic hardening on the micrometer scale, will be
presented.

4.1. Strain Gradient Theories

First we will consider the Fleck and Hutchinson phe-
nomenological strain gradient theory [29, 30] and its succes-
sive versions. In these theories, the effect of strain gradient
tensor is incorporated into the potential energy density func-
tion, in a manner similar to the classical theories of Toupin
[265] and Mindlin [266] in which only linear elasticity was
considered. A higher order stress tensor needs to be intro-
duced in these theories to provide a work conjugate to the
strain gradient tensor, and the boundary condition of classi-
cal solid mechanics also needs to be modified as well. The
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classical J2 deformation theory of plasticity (i.e., Hencky-
type solid strain theory) is chosen as the basis of strain gra-
dient generalization.
The Gao and Huang MSG theory [33, 35] does not use the

potential energy approach (and actually, potential energy
even does not exist in that theory). Rather, this theory is
based on the Taylor relation between the shear strength and
dislocation density. A multiscale framework is used to intro-
duce the higher order stress tensor and to establish the vir-
tual work balance. Numerical simulations showed that while
the higher order stress tensor is affected by the material
length characterizing the size of the framework cell (called
the mesoscale cell), the stress and strain tensors are almost
unaffected. This observation triggered a reformulation in the
form of the TNT theory [259], in which the strain gradient is
numerically simulated as a nonlocal variable and the higher
order stress disappears. This reformulation coincided with
a revision proposed by Bažant [260, 261] for entirely differ-
ent reasons—namely, the observation that the presence of
couple stresses, dictated by the use of a strain gradient ten-
sor as an independent kinematic variable, causes an exces-
sive small-size asymptotic size effect, indicating that couple
stresses should be removed from the formulation.
The Acharya and Bassani strain gradient theory [262, 263]

differs significantly from the previous theories. It represents
a generalization of incremental plasticity rather than total
strain theory. The effect of a strain gradient is considered by
changing the tangential modulus in the constitutive relation,
while the framework of classical plasticity theory remains.

4.1.1. Fleck and Hutchinson Theories
The first phenomenological strain-gradient theory developed
by Fleck and Hutchinson [29, 30] is called the couple stress
theory (denoted by CS). The subsequent modification [31] is
called the stretch and rotation gradients theory (denoted by
SG). Since the main idea of these two theories is the same,
we will consider them jointly. To simplify the problem, only
incompressible materials will be considered and the elastic
part will be ignored because it is negligible compared to
large plastic deformation of metals.
In the classical work of Toupin [265] and Mindlin [266],

and dealing only with the linear elasticity case, the strain
gradient is introduced into the strain energy density W as

W = 1/2(!ii!jj + �!ij!ij + a18ijj8ikk + a28iik8kjj
+ a38iik8jjk + a48ijk8ijk + a58ijk8kij (27)

where ( and � are the usual Lamé constants, !ij = �ui: j +
uj: i�/2 is the strain, 8ijk = uk: ij is the component of strain
gradient tensor �, and an is the additional elastic stiffness
constant of the material. The sum of the first two terms on
the right-hand side is the classical strain energy density func-
tion, while the other five terms are the contributions of the
strain gradient tensor. Based on the strain energy density
defined as (27), the Cauchy stress �ij can be defined as a
work conjugate to !ij (i.e. �ij = ;W/;!ij). A higher order
stress tensor �, work conjugate to the strain gradient tensor
�, needs to be defined as <ijk = ;W/;8ijk. The strain energy
W defined by (22) represents a linear elastic constitutive

relation. There are many ways to extend it to a general non-
linear plastic material. Fleck and Hutchinson [31] chose to
do it by defining a new variable, a scalar called the combined
strain quantity, E, which involves both the strain tensor and
the strain gradient tensor, to replace the effective strain in
the J2 theory. W is then assumed, for a general nonlinear
plastic material, to be a nonlinear function of E. To define
E, the strain gradient tensor � needs to be decomposed into
a hydrostatic part �H and deviatoric part �′:

8Hijk = �'ik8jpp + 'jk8ipp�/4 �′ = �− �H (28)

Due to incompressibility, we have !′ij = !ij , 8′
ijk = 8ijk. Fur-

thermore, �′ is decomposed into three orthogonal parts �′ =
�′�1� +�′�2� +�′�3� such that 8′�m�

ijk 8
′�n�
ijk = 0 when m �= n [31];

the three invariants 8′�n�
ijk 8

′�n�
ijk are used to define E,

E =
√
2!′ij!

′
ij /3+ >218′�1�

ijk 8
′�1�
ijk + >228′�2�

ijk 8
′�2�
ijk + >238′�3�

ijk 8
′�3�
ijk

(29)

where >i are three length constants which are given different
values in different version of the theory.

For CS: >1 = 0 >2 = >CS/2 >3 =
√
5/24>CS (30)

For SG: >1 = >CS >2 = >CS/2 >3 =
√
5/24>CS (31)

Here >CS is called the material characteristic length. If the
strain gradient part is ignored, scalar E becomes identical to
the effective strain ! used in the classical plasticity theories.
Now the strain energy density W can be expressed as a

function of E instead of ! as W = W�E�; thus the Cauchy
stress tensor � and the higher order stress tensor � can be
expressed as

�ij =
;W

;!ij
= dW

dE

;E

;!ij
= 2!ij
3E

dW

dE
(32)

<ijk =
;W

;8ijk
= dW

dE

;E

;8ijk

= dW

E dE

(
>218

′�1�
lmn

;8
′�1�
lmn

;8ijk
+ >228′�2�

lmn

;8
′�2�
lmn

;8ijk
+ >238′�3�

lmn

;8
′�3�
lmn

;8ijk

)

= >2CSCijklmn8lmndW

E dE
(33)

Here Cijklmn is a six-dimensional constant dimensionless ten-
sor [264]. Since the values of >i are different in CS and SG
theories, the tensor C will also be different in these two the-
ories, although for each of them C is a constant tensor, that
is, independent of !, �, and >CS. Because of the existence of
higher order stress, the field equations of equilibrium must
be generalized as

�ik: i − <ijk: ij + fk = 0 (34)

where fk is the body force.
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4.1.2. Gao and Huang MSG Theory
and TNT Theory

As the first strain gradient theory based on geometrically
necessary dislocations, the MSG theory is a generalization
of the incremental theory of plasticity [267]. In the MSG
theory, the definition of strain gradient tensor 8ijk = uk: ij is
the same as it is in the Fleck and Hutchinson theories, but
the definition of higher order stress is different. It is defined
by virtual work balance in a multiscale framework. The final
constitutive relation reads [33, 260, 261, 264]

�ik=K'ik!nn+
2�
3!
!′ik <ijk= l2!

(
K

6
8Hijk+�?ijk+

�2Y
�
Aijk

)
(35)

where

?ijk =
1
!
�Bijk −Cijk� Aijk = f �!�f ′�!�Cijk (36)

! =
√
2!′ij!

′
ij /3 8 =

√
8′
ijk8

′
ijk/2

� = �Y
√
f 2�!�+ l8

(37)

and

Bijk = D28ijk + 8kji + 8kij − �'ik8ppj + 'jk8ppi�/4E72
Cijk = D!ik8jmn + !jk8imn − �'ik!jp + 'jk!ip�8pmn/4E

× !mn/54!2
8Hijk = �'ik8jpp + 'jk8ipp�/4 8′

ijk = 8ijk − 8Hijk

(38)

where K is the elastic bulk modulus. Equation (37) defines
the new hardening rule of the material in which �Y is the
yield stress; ! and � are the effective strain and stress; 8
is the effective strain gradient, which is proportional to the
density of geometrically stored dislocations; �Y f �!� repre-
sents the classical plastic hardening function; l is the mate-
rial intrinsic length (similar to parameter >CS used in the
Fleck and Hutchinson theories [29–31]); !′ij = !ij − !nn/3 is
the deviatoric strain; 8Hijk is the volumetric part of strain gra-
dient tensor; and l! is the size of the so-called “mesoscale”
cell which is expressed by Gao et al. [33] as

l! = ��G/�Y �b (39)

Here G is the shear modulus, b is the Burgers vector,
and � is an empirical factor whose value is suggested to
be between 1 to 10 [33]. The equilibrium equations are the
same as (29). It is also interesting to consider a more general
hardening relation,

� = �Y Df q�!�+ �l8�pE1/q (40)

where p and q are positive exponents; and MSG theory cor-
responds to the case p = 1, q = 2.
When the MSG theory is used in numerical simulations,

the results show that when the value of l! is changed, the
stress and strain do not change much, although the higher
order stress does. This means that the existence of the
higher order stress offers no advantage [35] (aside from
the fact that they make the asymptotic scaling problematic

[261, 264]). Upon noticing this fact, the MSG theory has
been replaced by the TNT theory, in which the higher order
stress tensor is removed.
In the TNT theory, the strain gradient is not an inde-

pendent variable but a nonlocal variable defined by numer-
ical integration. The gradient term !ij: k can be numerically
approximated in a nonlocal form as [259]

!ij: k =
∫
Vcell

D!ij �x+ G�− !ij�x�EGm dV
(∫
Vcell

GkGm dV
)−1

(41)

in which Vcell is a sufficiently small representative cell sur-
rounding point described by x. To simplify the integration,
Vcell can be chosen as a cube centered at x, and then the
strain gradient 8ijk can be expressed as

8ijk =
1
I!

∫
Vcell

D!ikGj + !jkGi − !ijGkE dV with

I! =
∫
Vcell

G21 dV = 1
12
l5! (42)

where l! is the size of the cube. Furthermore, one may intro-
duce the volumetric part �H and the deviatoric part �′ of
tensor �, and the effective strain gradient invariant 8 =√
8′
ijk8

′
ijk/2, which is identical to that defined in the MSG

theory. Because the strain gradient tensor does not function
in (40) as an independent kinematic variable, we need not
define the corresponding work-conjugate higher order stress
tensor. For p = 1, q = 2, the constitutive relation is [259]

�ik = K'ik!nn +
2�
3!
!′ik

where

� = �Y
√
f 2�!�+ l8 (43)

Since the new higher order stress is absent, the equilibrium
equation of the TNT theory is the same as in the classical
theory (i.e., �ij: i + fj = 0).

4.1.3. Acharya and Bassani Theory
The Acharya and Bassani strain gradient theory is a general-
ization of the classical incremental plasticity theory, in which
the strain gradient is assumed to affect only the instanta-
neous modulus. The strain gradient is considered to be a
measure of lattice incompatibility and is introduced only
through the second-order tensor as [262, 263]

�ij = ejkl!pil: k (44)

where ejkl is the alternating symbol and !p is the plastic
strain. Introducing the invariant:

� =
√
2�ij�ji (45)

Acharya and Bassani modified the classical J2 flow theory as
follows [262, 263]:

<=
√
� ′
ij�

′
ij /2 <̇= <̇cr=h�Hp:��Ḣp (46)

!̇
p
ij=�Ḣp/2<�� ′

ij �̇ij=Cijkl�!̇kl− !̇pkl� Hp=
√
2!pij!

p
ij/3

(47)
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Here the instantaneous hardening modulus h depends not
only on plastic strain invariant Hp but also on plastic strain
gradient invariant �. An example of this function is [262,
263]

h�Hp: �� = h0
(
1+ H

p

H0

)N−1[
1+ l2��/H0�

2

1+ c�Hp/H0�2
]1/2

(48)

where l is the material intrinsic length, and h0, H0, c, and N
are positive material constants.
There exist other strain gradient theories, but generally

they are similar to one of the theories introduced here. For
example, the Chen and Wang [268, 269] strain gradient the-
ory is similar to the Fleck and Hutchinson theories.

4.2. Asymptotic Analysis of Strain
Gradient Theories

For the purpose of scaling analysis, we need to consider geo-
metrically similar structures of different sizes. This means
that the structures are also similarly loaded. It is obvious
that the strain gradient theories must reduce to the clas-
sical plasticity theory when the structure size is very large.
To discuss the asymptotic cases, it is necessary to introduce
dimensionless variables. Diverse sets of such variables could
be chosen but only one is easy to interpret,

x̄i = xi/D ūi = ui/D !̄ij = !ij
8̄ijk = 8ijkD f̄k = fkD/�N

(49)

where D is the characteristic length of the structure, and �N
is the nominal strength. For geometrically similar structures
the strain distribution may often be assumed to be the same,
and then x̄i, ūi, !̄ij , and 8̄ijk will be size independent; that
is, they will be the same for structures of different sizes.
Consequently, the asymptotic behavior of the strain gradient
tensor must be 8ijk ∝ 1/D.

4.2.1. Asymptotic Analysis of the Fleck
and Hutchinson Theories

Scaling and Size Effect The Fleck and Hutchinson strain
gradient theory can be used to generalize various partic-
ular forms of classical constitutive relations for plasticity.
A stress–strain relation in the form of a general power law
relation may be chosen as an example, in which the strain
energy density is [29–31]

W = n

n+ 1
�0E0

(
E

E0

)�n+1�/n
(50)

where �0, E0, and n are positive material constants. For
hardening materials, n ≥ 1; typically n ≈ 2–5 for normal
metals. According to (32) and (33), the constitutive relation
then reads

�ik =
2
3
�0

(
1
E0

)1/n
E�1−n�/n!ik (51)

<ijk = �0
(
1
E0

)1/n
>2CSE

�1−n�/nCijklmn8lmn (52)

It is now useful to define dimensionless variables:

<̄ijk = <ijk/�E0>CS� �̄ij = �ij/�0 �E = E
8̄
�l�

ijk = 8′�l�
ijk D �l = 1: 2: 3�

(53)

Then the constitutive relation can be expressed as

�̄ik =
2
3

(
1
E0

)1/n
�E�1−n�/n!̄ik (54)

<̄ijk =
(
1
E0

)1/n >CS
D

�E�1−n�/nCijklmn8̄lmn (55)

The equilibrium equation (29) can be rewritten as

;i�̄ik −
>CS
D
;i;j <̄ijk +

�N
�0
f̄k = 0 (56)

where ;i = ;/;x̄i = derivatives with respect to the dimen-
sionless coordinates. Substituting (49) and (55) into (56),
one obtains the dimensionless field equation of equilibrium
in the form

2
3

(
1
E0

)1/n
;i
(�E�1−n�/n!̄ik)− (

>CS
D

)2( 1
E0

)1/n
× ;i;j

(
Cijklmp�E�1−n�/n8̄lmp

) = −�N
�0
f̄k (57)

Following Bažant [260, 261] and Bažant and Guo [264],
we may simplify the analysis by replacing the surface frac-
tions with body forces applied in a very thin boundary layer,
the thickness of which tends to zero. This ensures that all
the boundary conditions are homogeneous. When the struc-
ture is sufficiently large, >CS/D → 0, <̄ijl vanish, according
to (55), and the equilibrium equations reduce to the classi-
cal equilibrium equations, as required. The combined strain
quantity, E, reduces to the classical effective strain because
the strain gradient part can be ignored compared to the
strain part. Then the strain energy density function takes the
normal form as a function of the strain only.
As proposed by Bažant and Guo [264], it is interesting

to look at the opposite asymptotic character of the theory
when the structure size tends to zero, >CS/D→ �. At first,
the dimensionless combined strain quantity can be rewritten
as

�E =
√
2!′ij!

′
ij /3+

(
>218̄

′�1�
ijk 8̄

′�1�
ijk + >228̄′�2�

ijk 8̄
′�2�
ijk + >238̄′�3�

ijk 8̄
′�3�
ijk

)/
D2

∝ D−1 for >CS/D→ � (58)

If one defines a size-independent dimensionless variable

�H =
√
>218̄

′�1�
ijk 8̄

′�1�
ijk + >228̄′�2�

ijk 8̄
′�2�
ijk + >238̄′�3�

ijk 8̄
′�3�
ijk

/
>CS (59)

the asymptotic behavior is seen to be

�E ≈ >CS
D

�H for >CS/D→ � (60)
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Substituting (60) into (57), the asymptotic form of the equi-
librium equation reads

2
3

(
>CS
D

)�1−n�/n( 1
E0

)1/n
;i
(�H�1−n�/n!̄ik

)− (
>CS
D

)�1+n�/n
×
(
1
E0

)1/n
;i;j

(
Cijklmp �H�1−n�/n8̄lmp

) = −�N
�0
f̄k (61)

After multiplying this equation by �D/>CS��n+1�/n and tak-
ing the limit of the left-hand side for >CS/D→ �, one gets
the following asymptotic form of the equilibrium equations:

;i;j
(
Cijklmp �H�1−n�/n8̄lmp

) = Jf̄k
with J = �E 1/n

0
�N
E0

(
D

>CS

)�n+1�/n
(62)

Because the left-hand side of the foregoing equation, as
well as the dimensionless body force f̄k, is independent of
size D and because the boundary conditions are homoge-
neous and thus size independent, the parameter J must be
size independent. Thus, upon solving �N from (62), one
finds that the small-size asymptotic scaling law is

�N = �0J�E−1/n
0

(
>CS
D

)�n+1�/n
(63)

or

�N ∝ D−�n+1�/n (64)

For plastic hardening materials, we have 1 < �n+ 1�/n ≤
2. Although the result (64) applies only to the special case
of strain energy density function given by (50), the analyt-
ical technique used here is general. It is even suitable to
the strain energy density function defined directly in terms
of strain and strain gradients, rather than as the combined
strain quantity. For example, if the strain energy density
function is defined as (27) for the case of linear elasticity,
a similar analysis can be made and it is found that the size
effect law for very small sizes reads [264]

�N ∝ D−2 (65)

This also shows that (64) is quite general because (65) can
be regarded as a special case of (64) in which the strain
hardening exponent n = 1.

Small-Size Asymptotic Load–Deflection Response
For some special cases (e.g., the pure torsion of a long thin
wire or the bending of a slender beam), the symmetry con-
ditions require displacement distribution to remain similar
during the loading process. For such cases, the dimension-
less displacement ūk can be related to a single parameter,
w, and characterized by displacement profile ûk as ūk = wûk
[260, 261, 264]. Since ûk is dimensionless, it must be inde-
pendent of the size D. Displacements ūk evolve during the
proportional loading process while the distribution profile
remains constant. Thus the parameter w can be considered
as the displacement norm, �ūk�. It follows that the strain,
strain gradient, and combined strain quantity are all propor-
tional to w. Therefore, �E can be similarly represented as
�E = wÊ, where Ê is a size independent profile function, and

w can be regarded as the deflection magnitude. Substituting
this relation into the dimensionless constitutive relation (54)
and (55), one can easily get

�̄ik = w1/n�̂ik <̄ijk = wl/n<̂ijk (66)

where �̂ik and <̂ijk are both size independent profile func-
tions. Substituting these relations into dimensionless equilib-
rium equation (56), one finds that the load-deflection curve
must have the form

f̄k ∝ w1/n (67)

This relation is similar to the traditional strain–stress rela-
tion derived from the strain energy density function (50).
The reason the load deflection curve begins with a vertical
tangent is that the initial elastic response is assumed to be
negligible.

Example One important example is the microtorsion of a
thin wire, for which a strong size effect was demonstrated
[29–31] and described by strain gradient theories. The strain
energy density function W is defined as W = �EN+1/�N +
1�. Compared with (50), one finds that N = 1/n. The radius
of the wire, D, is chosen as the characteristic size of the
structure. The deformation is characterized by the twist
angle per unit length, L. The nominal stress can be defined
as �N = T /D3, where T is the torque. For different radii of
the wire, we compare the �N values corresponding to the
same dimensionless twist L̄ = LD. The nominal stress can
be expressed according to the CS theory as follows:

�N = T

D3
= 6
N+3�0L̄

N

{[
1
3
+
(
>CS
D

)2]�N+3�/2
−
(
>CS
D

)N+3}
(68)

When >CS/D→ �, one has

[
1
3
+
(
>CS
D

)2]�N+3�/2
−
(
>CS
D

)N+3

≈ N + 3
2

(
D

3>CS

)2(>CS
D

)N+3
(69)

from which

�N ∝ D−N−1 = D−�n+1�/n (70)

For the load-deflection response, we now obtain the follow-
ing relation between the load T and the deformation L̄:

T ∝ LN = L1/n (71)
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4.2.2. Asymptotic Analysis of the Gao
and Huang MSG Theory
and TNT Theory

Scaling and Size Effect The dimensionless variables
defined in (49) also need to be used here, and further dimen-
sionless variables need to be defined as follows:

!̄ = ! 8̄ = 8D �̄ij = �ij/�Y
<̄ijk = <ijk/��Y l� �̄ = �/�Y

(72)

8̄Hijk = 8HijkD �Bijk = BijkD �Cijk = CijkD
�?ijk = ?ijkD �Aijk = AijkD

(73)

These definitions are meaningful because 8Hijk, Bijk, and Cijk
are all homogeneous functions of degree 1 of tensors 8ijk
and !ij . It is not difficult to obtain a dimensionless version
of the constitutive law of the MSG theory

�̄ik =
K

�Y
'ik!̄nn +

2�̄
3!̄
!̄′ik

<̄ijk =
l2!
lD

(
K

6�Y
8̄Hijk + �̄�?ijk +

1
�̄
�Aijk

)
(74)

where l and l! are two characteristic material lengths. The
corresponding dimensionless equilibrium equation reads

;i�̄ik −
l

D
;i;j <̄ijk +

�N
�Y
f̄k = 0 (75)

Same as before, the boundary conditions can again be
considered as homogeneous and the applied loads replaced
by body forces f̄k applied within a thin surface layer. The
asymptotic behavior for a very large structure is simple.
When l/D→ 0, we also have l!/D→ 0. Thus <̄ijk tends to
zero, according to Eq. (69), and all the equations reduce to
the standard equations of classical plasticity theory, which
means that there is no size effect, as required by classical
plasticity.
The opposite asymptotic character for sufficiently small

structures (l/D → � and l!/D → �) is more interest-
ing. The general hardening rule (40) can be rewritten with
dimensionless variables as

�̄ = Df q�!�+ �l8̄/D�pE1/q (76)

Thus, we have �̄ ≈ �l8̄/D�p/q when l/D → �. Substitut-
ing (74) into (75), we can express the equilibrium equation
as follows:

;i

[
K

�Y
'ik!̄nn +

2
3!̄

(
l8̄

D

)p/q
!̄′ik

]
−
(
l!
D

)2
× ;i;j

[
K

6�Y
8̄Hijk +

(
l8̄

D

)p/q
�?ijk +

(
D

l8̄

)p/q
�Aijk

]
= −�N

�Y
f̄k (77)

When l/D→ �, the five terms on the left-hand side of the
foregoing equation are, in sequence, of the order of

O�1� O�D−p/q� O�D−2� O�D−2−p/q� O�D2+p/q�
(78)

When D→ 0, the fourth term is generally the dominant
one, and so we get the asymptotic form of the equilibrium
equation,

;i;j�8̄
p/q�?ijk� = J1f̄k (79)

with

J1 =
(
l

l!

)2 �N
�Y

(
D

l

)2+p/q
(80)

Since D is not present in the left-hand side of (80) and the
boundary conditions are also homogeneous, the parameter
J must be independent of D. Thus, the general small-size
asymptotic scaling law of MSG theory reads [260, 261, 264]

�N = �YJ1
(
l!
l

)2( l
D

)2+p/q
and for p

q
= 1

2

�N ∝ D−5/2 (81)

This asymptotic size effect is very strong [260, 261, 264].
It is much stronger than the normal linear elastic fracture
mechanics size effect, which is �N ∝ D−1/2, or the typical
Weibull size effect, which is around �N ∝ D−0�1.
There are also some special cases. For example, in the

case of microbending, �?ijk = 0 for all i: j: k, which makes
the fourth term on the left-hand side of (77) vanish; in
the case of incompressible material, 8Hijk = 0, which makes
the third term on the left-hand side of (77) zero. So
the general size effect law will change to �N ∝ D−2 for
microbending of a compressible material, and to �N ∝
D−2+p/q for microbending of an incompressible material (in
detail, see [264]).
The size effect D−5/2, as well as D−2, is enormous and

unrealistic. This is a consequence of the last three terms
on the left-hand side of (77), which represent contributions
from the couple stresses. A detailed analysis showed that the
couple stresses are not necessary to fit the test results and
to ensure the virtual work balance [264]. Based on this anal-
ysis, Bažant [260, 261] and Bažant and Guo [264] proposed
a modified version of the MSG theory in which the couple
stresses are made to vanish. This led to a theory identical to
the TNT theory [260, 261, 264], which was proposed on the
basis of numerical experience with varying the “mesoscale
cell size” l!. Let us now analyze the asymptotic size effect
of this theory. The dimensionless variables defined for the
MSG theory may again be used for TNT theory. The dimen-
sionless constitutive relation of the TNT theory reads

�̄ik =
K

�Y
'ik!̄nn +

2�̄
3!̄
!̄′ik (82)

and the differential equation of equilibrium in terms of the
dimensionless variables takes the form

;i�̄ik +
�N
�Y
f̄k = 0 (83)

For large enough sizes, D/l→�, the asymptotic behavior
will be identical to the classical theory of plasticity, which
implies no size effect. For very small sizes, D/l→ 0, we have

�̄ = Df q�!�+ �l8̄/D�pE1/q ≈ �l8̄/D�p/q (84)
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and the equilibrium equation can be rewritten as follows:

;i

[
K

�Y
'ik!̄nn +

2
3!̄

(
l8̄

D

)p/q
!̄′ik

]
= −�N

�Y
f̄k (85)

Obviously, the second term on the lefthand side domi-
nates when D/l → 0, and so the asymptotic form of the
equilibrium equation is

;i

(
8̄p/q

!̄′ijk
!̄

)
= Jf̄k with J = −3

2
�N
�Y

(
D

l

)p/q
(86)

Same as before, J is sizeindependent, and consequently the
small-size asymptotic scaling law for the TNT theory is

�N = −2�Y
3
J

(
l

D

)p/q
and for p

q
= 1

2

�N ∝ D−1/2 (87)

Four possible cases of small-size asymptotic scaling for the
MSG theory and the TNT theory are shown in Figure 45.

Small-Size Asymptotic Load-Deflection Response
The characteristic features of the small-size asymptotic load-
deflection curves will now be determined. The MSG theory
will be analyzed first, and the TNT theory can be treated as
a special limiting case of the MSG theory. Again we con-
sider only the special cases where the relative displacement
profile does not change during the loading process. Same as
before, the displacement can be characterized by parameter
w as ūk = wûk, where ûk is the displacement profile, which
is not only independent of D but also invariable during the
proportional loading process. Similarly, the strain and strain
gradient can be expressed as !̄ij = !ij = w!̂ij , !̄ = ! = w!̂,
8̄ijk = w8̂ijk, 8̄ = w8̂. Since variables Bijk and Cijk are homo-
geneous functions of degree 1 of both � and �, their cor-
responding dimensionless variables can also be expressed
as products of w and a dimensionless profile function (i.e.,
�Bijk = wB̂ijk and �Cijk = wĈijk). Because of the factor 1/!
in the definition of ?ijk [see Eq. (36)], we have �?ijk = ?̂ijk,
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Figure 45. Four possible small-size asymptotic scaling curves for the
MSG theory and the TNT theory.

which means that �?ijk is independent of w. When we con-
sider the beginning of the load-deflection diagram at D→ 0,
we also have w → 0, which is a limit not discussed during
previous sizeeffect analysis. When the effect of w is con-
sidered, the five terms on the left-hand side of (77) are
proportional, in sequence, to the functions as follows:

w �w/D�p/q w/D2 wp/q/D2+p/q

w1−p/q w1−p/q/D2−p/q (88)

In the case of MSG theory with p = 1: q = 2, these functions
are

w
√
w/D w/D2 w1/2/D5/2 w1/2/D3/2

(89)

and (77) can then be expressed as

−�N
�Y
f̄k=a1w+a2wp/qD−p/q+a3wD−2+a4wp/qD−2−p/q

+a5w1−p/qD−2+p/q (90)

where parameters ai are constants independent of D and
w. Since the force f̄k should decrease when w decreases,
one knows that 1 − p/q > 0, which implies p < q. As we
discussed before, if only D → 0 is considered (or, in other
words, D� w�, the dominant term is a4wp/qD−2−p/q , which
means that

f̄k ∝ wp/q �for w � D� (91)

For the MSG theory, this gives

f̄k ∝ w1/2 �for w � D� (92)

We need to consider another asymptotic case in which w �
D (e.g., at the beginning of the load-deflection diagram).
The dominant term in this case is either a4wp/qD−2−p/q

or a5w1−p/qD−2+p/q , depending on the value of p/q. The
asymptotic load-deflection behavior is

f̄k ∝ wr r = minNp/q: 1− p/qO �for w � D�
(93)

For MSG theory, the dominant term is a4w1/2D−5/2, and so
the load f̄k initially increases in proportion to w1/2. Thus one
has the asymptotic load-deflection relation for MSG theory
as

f̄k ∝ w1/2 for all w (94)

As discussed in the preceding section, some terms in (77)
may vanish in some special cases, and a similar analysis
can be applied to these special cases. For example, for
microbending of an incompressible material, the third and
fourth terms in (77) vanish, and as a result (92) changes as
follows:

−�N
�Y
f̄k = a1w + a2

√
w/D + a5w1/2/D3/2 (95)

The asymptotic load-deflection curve is simple because
the last term on the right-hand side of (95) dominates when
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D is small, regardless of the ratio of w/D, and so the asymp-
totic load-deflection relation for this special case is again

f̄k ∝ w1/2 for all w (96)

This means the vanishing of some terms in flexure prob-
lems will not change the asymptotic load-deflection behav-
ior. The TNT theory can be treated as a special case of
the MSG theory. If the last three terms on the right-hand
of the MSG equilibrium equation (77) vanish, the equation
becomes identical to equilibrium equation (85) of the TNT
theory. So (85) can be expressed as

−�N
�Y
f̄k = a1w + a2

√
w/D (97)

For small enough D and w, the dominant term will be the
second term on the right-hand side of (97), and so we have

f̄k ∝ w1/2 for all w (TNT theory) (98)

It should be noted that the elastic part of the response has
been neglected, which is why the load-deflection curves in
(94), (96), and (98) begin with a vertical tangent.

Example The experiment of microtorsion of a thin wire
can also be analyzed by the MSG theory [35] or TNT theory.
Equation (35) in [35] can be transformed to the dimension-
less formula

�N = T

D3
=�Y

2�L̄
3

∫ 1
0

{
�̄

!̄

(
.2+ l2!

12D2

)
+ l

2
!f �!̄�f

′�!̄�
12D2�̄

}
.d.

(99)

where �N is the nominal stress, T is the torque, D is the
radius of wire (which is also chosen as the characteristic
length of the structure), �Y is the yield stress of macroscale
metal, and L̄ = 8̄ = LD is the dimensionless specific angle
of twist, where L = actual specific angle of twist (i.e., the
rotation angle per unit length of wire). Substituting �̄ =√
f 2�!̄�+ l8̄/D ≈√

lL̄/D into this formula, we find that, for
D→ 0, the dominant part is obtained by integration of the
second term, which leads to the following small-size asymp-
totic form:

�N = �Y
(
�

18
l2!l

1/2
∫ 1
0

.

!̂
d.

)
L̄1/2D−5/2 (100)

This result verifies the conclusions (81) and (89), where L̄
is considered as a measure of deflection, analogous to w in
(89). The asymptotic load-deflection behavior of the TNT
theory can be obtained similarly.
Another special case is the application of the MSG theory

to the microbending of incompressible metals [35]. Equa-
tion (29) in [35] can be transformed to the dimensionless
version

�N = M

D2
= 2�Y

∫ 1/2
0

[
2√
3
�̄.+ L̄l

2
!f �!̄�f

′�!̄�
9D2�̄

]
d. (101)

where D is the beam depth (the characteristic dimension
of the structure), M is the bending moment, L̄ = 8̄ = LD
is the dimensionless bending curvature, and L is the actual

bending curvature. When D→ 0, the small-size asymptotic
form is

�N = �Y
(
2
9
l2!l

−1/2
∫ 1/2
0
f �!̄�f ′�!̄�d.

)
L̄1/2D−3/2 (102)

This verifies for this special case the asymptotic behavior
�N ∝ D−2+p/q , as well as (96). Letting l! = 0, one finds that
this asymptotic character also applies to the TNT theory.

4.2.3. Asymptotic Analysis of Acharya
and Bassani’s Theory

Let us now give a simple analysis of the asymptotic behavior
of the Acharya and Bassani strain gradient theory [263]. We
define dimensionless variables ūi = ui/D, !̄ij: k = !ij: kD, and
that �̄ij = �ijD. When D → 0, the asymptotic behavior of
the plastic hardening modulus (H̄p = Hp� defined by (48) is
found to be

h�Hp: �� = h0
(
1+ H

p

H0

)N−1[
1+ c�Hp/H0�2

]−1/2 �̄
H0

l

D

∝ D−1 (103)

This shows that, at the same strain level, the plastic hard-
ening modulus (slope of load deflection curve) increases as
D−1 when D → 0. If the elastic part is neglected for very
large plastic strain, the nominal stress must also scale asymp-
totically as D−1. This asymptotic size effect is again quite
strong (but not as strong as in the MSG theory). This size
effect can be reduced by modifying the hardening function
h�Hp: ��. For example, if the hardening modulus is rede-
fined as

h�Hp: �� = h0
(
1+ H

p

H0

)N−1[
1+ l�/H0

1+ c�Hp/H0�
]1/2

(104)

then the asymptotic scaling becomes more reasonable:

h�Hp: �� ∝ D−1/2 when D→ 0 (105)

4.3. Asymptotic-Matching
Approximation Formula

After determining the asymptotic behaviors of strain gradi-
ent plasticity theories, one can obtain an asymptotic match-
ing approximation for a smooth transition of the nominal
strength in the intermediate size range. In [260, 261, 264],
a smooth transition between the case of no size effect for
D→ � and the case of power law size effect �N ∝ D−s for
D→ 0 �s > 0� has been described by the simple asymptotic-
matching approximation

�N = �0
[
1+

(
D0

D

)2s/r]r/2
(106)

where r is a constant to be determined by data fitting, while
parameters �0 and D0 can be determined by either the
asymptotic size effect formula or data fitting. This formula
was shown to fit the results for microtorsion and microbend-
ing (Figs. 46 and 47).
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Figure 46. Asymptotic-matching approximation for microtorsion.

4.4. Concluding Remarks on Strain
Gradient Theories

In many applications of interest (e.g., microelectronics and
MEMS), characteristic dimensions are in excess of 100 nm–
1 �m. Modeling the mechanics of such systems at the
atomistic level is beyond present computational capabilities.
Therefore, extension of continuum theories to account for
size scales is of high relevance. Here we have discussed many
of the existing theories. At the same time, their range of
applicability was examined through small-size asymptotics.
Even though the small-size asymptotic behavior is

obtained only below the size range of applicability of the
theory (>100 nm), it is useful to pay attention to it. Sev-
eral main theories show unreasonable small-size asymptotic
behavior, which impairs the representation of experimen-
tally observed behavior in the practical size range and spoils
asymptotic matching approximations. Simple adjustments of
the theories suffer to obtain reasonable asymptotics and
make asymptotic matching approximation meaningful.
Finally, an analogy with quasibrittle materials such as con-

crete, rocks, sea ice, and fiber composite may be mentioned
[270]. For them, too, the small size as well as large size
asymptotic behaviors are attained only outside the range
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Figure 47. Asymptotic-matching approximation for microbending.

of validity of the theoretical models (cohesive crack model,
crack band model, nonlocal damage models), that is, for
specimen sizes much smaller than the inhomogeneity size
or much larger than the largest constructable structures. Yet
the knowledge of two-sided asymptotics has been shown
to be very helpful to achieving good asymptotic matching
approximations for the intermediate practical range.
It is also important to emphasize that strain gradient the-

ories cannot explain the size scale effects observed in fcc
metals in the absence of strain gradients [36, 37]. Clearly,
new continuum theories are needed to be able to predict
these size effects.

5. MODELING ONE-DIMENSIONAL
MATERIALS: NANOTUBES AND
NANOWIRES

One-dimensional nanoscale materials, that is, nanotubes
(carbon CNT, boron nitride BNNT, etc.) and nanowires (e.g.,
silicon SiNW), are drawing ever more attention due to their
promising properties for a variety of future applications.
Mechanical strength of CNTs and BNNTs along with their
electrical (for carbon) and thermal conductivity (for both),
are appealing for composite applications. Although SiNWs
have little advantage in strength, their chemical properties
enable ease of doping and as a result they are outstand-
ing light-emitters due to a quantum confinement effect.
These nanowires have the additional advantage that can be
straightforwardly integrated in Si circuits. Here, we review
some of the recent results concerning the mechanical yield
and failure as well as the possible coalescence or welding
mechanisms of C and BN nanotubes. Fundamental struc-
tures and energetics of SiNWs are also discussed, in order to
contrast bulk-based materials with the uniquely built cylin-
drical entities.
Interest in composite application of CNTs is due to their

mechanical strength combined with the electrical and ther-
mal conductivity that together could lead to development a
multifunctional material basis for a variety of novel purposes
ranging from textile to aerospace applications. Besides the
economical aspects, like low cost volume production of CNT,
the limiting factors for their utilization in composites include
their proper dispersion in matrix media, matrix-CNT adhe-
sion and load transfer, intertubular connectivity and shear
resistance, and internal strength of individual tubes. While
manufacturing and cost issues remain mostly a subject of
experimental empirical study, the mechanics of nanotubes
has been a topic of detailed theoretical investigations and
multiscale computational modeling.
Theoretical studies of CNT mechanics have been moti-

vated by experimental evidence of great resilience and by
expectations of extraordinary strength. These are based
upon the strength of the individual carbon bonds and
the elegance of two-dimensional carbon network structures.
CNT mechanics, including buckling, yielding, and failure
mechanisms, have been extensively investigated and are
summarized in recent reviews [145, 271], while the studies
of elastic behavior, both linear and nonlinear, and buck-
ling have made the transition from science to engineering
(via the demonstrated correspondence of atomistic modeling
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methods and continuum elasticity and finite elements [145,
271]). Many issues of inelastic behavior still require analy-
sis at the atomic scale utilizing the solid state physics and
quantum chemistry formulations.
As an important example, we have recently undertaken

a systematic series of quantum ab initio calculations of
structures and moduli [272, 273] for C, BN (boron nitride
or “white graphite,” shown in Fig. 48) and CFx (flu-
orinated carbon) shells. They utilize density functional
based computations (within Gaussian package) with periodic
boundary conditions that yielded a set of accurate elastic
parameters [272] that can be further employed in engineer-
ing shell models for CNT elasticity, vibrations, or postbuck-
ling deformations. This careful discussion is also timely since
somewhat controversial data have recently emerged in the
literature, caused mainly by different interpretations of the
effective cross-section of nanostructures, referred to recently
as Yakobson’s paradox [274].
SiNW is another type of 1D structure of high interest due

mostly to the strategy of building nanoscale technology via
the developed infrastructure of the silicon microelectron-
ics industry. Recent efforts have demonstrated that ultrathin
SiNWs indeed have properties that make them very com-
petitive in many aspects of nanoscale electronics. First, Si is
fairly reactive, enabling it to be easily doped. Second, faster
and lower energy-consuming electronic devices have been
suggested that are constructed of arrays of SiNWs, prelim-
inary forms of which have already been built [275]. Finally,
the quantum confinement effect opens a direct bandgap as
wide as 2.0–3.0 eV, laying a potential foundation for effective
visible light emitters and the so-called all-photonic technol-
ogy possible using silicon materials alone [276]. Additionally,
this direct bandgap has the potential to enable photovoltaics
of ultrahigh efficiency, that is, if bulk quantities of SiNWs
could be produced reasonably cheaply.
Recently, we found the ground-state structure of ultra-

thin, pristine SiNWs by utilizing theoretical analysis and
large-scale computations [277]. Surprisingly, these SiNWs
are polycrystalline and favor a whisker growth mode (i.e.,
they grow much faster along their axis than circumferen-
tially). Their structures and energetics with be shown in
comparison to other single crystalline nanowires. Moreover,
faceting and matching of the facets at the wire’s edges were
found to play a critical role in stabilizing the SiNWs.

Figure 48. Stone–Wales 5/7/7/5 defect in (5, 5) BN nanotube. Reprinted
with permission from [273], H. F. Bettinger et al., Phys. Rev. B 65,
041406 (2002). © 2002, American Physical Society.

5.1. Strength, Failure, and Healing
Mechanisms in Nanotubes

5.1.1. Energies and Thermodynamics
of the Yield Defects

The transition from yield to tensile strength for CNTs and its
underlying atomic mechanism have been subjects of particu-
lar interest. It has been proposed that two alternative yield-
failure paths in CNT are generally possible [44, 278]: (i) a
brittle fracture through a nucleation and growth of a crack as
in Figure 49, or (ii) a dislocation relaxation (i.e. intramolec-
ular plasticity) in case of a miniscule fiber-nanotube. Indeed,
it has been observed in detailed computer simulations that
the primary yield defect, an event at the atomic scale, is
represented by individual bond rotation, which leads to the
formation of two pentagon–heptagon pairs in the hexagonal
lattice, 5/7/7/5 in Figure 48. In the chemistry of fullerenes
and nanotubes, this corresponds to “pyracylene” or Stone–
Wales transformation. A computational study of this defect
energy at different levels of applied tension allows one
to determine the strain ! at which the defect formation
becomes thermodynamically favorable, whereby the nan-
otube can then possibly yield to the external tensile load.
Classical empirical potentials, tight binding approxima-

tions (TBA), and ab initio density functional theory calcu-
lations all identify the range of thermodynamic instability
with respect to yield as ! exceeds 6–7%. More recently we
applied the same approach to isomorphic BN nanotubes,
where the Stone–Wales defect (Fig. 48) again has been
shown to have the lowest energy, below that of the com-
peting structure of 4/8/8/4 polygons. The determined defect
formation energy under strain approximately follows a linear
relationship, namely,

ESW = 5�5–46! eV (107)

(cf. ESW = 3�1–45! eV in case of armchair carbon). Thus,
density functional analysis of yield thermodynamics for car-
bon (C, purely covalent) and boron nitride (BN, covalent-
ionic) permits a comparison of their yield strength with the
conclusion that partially ionic BN can be more resistant to
yield than the homoelemental C.

Figure 49. Quantum-mechanical relaxation of a nanocrack in H-
terminated CNT. Reprinted with permission from [280], T. Dumitrica
et al., J. Chem. Phys. 119, 1281 (2003). © 2003, American Institute of
Physics.
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5.1.2. Kinetic Theory of Strength
In any practical situation, a system is expected to sustain
tension only within a finite time limit, while thermodynamic
equilibrium implies time-unlimited conditions. A more con-
sistent approach to failure [279, 280] comes from one based
on rate equations and leads to more realistic estimates of
strength. A kinetic theory approach to strength evaluation
is an important step in this regard where the key point is to
determine the probability, P , of defect formation (yield) as
a function of time. It therefore can be calculated, provided
that the computed activation barriers E∗ are available, by

P = 1015Ld%t sec−1 nm−2 expD−E∗�!: J�/kbT E ∼ 1 (108)

where L is the CNT length and d is its diameter. Follow-
ing extensive computational examination of the saddle-point
activation barriers E∗ (Fig. 50a), this equation enabled cal-
culation of the breaking strains ! for a variety of temper-
atures T , duration times %t, and chiral symmetries J of
SWNT, as shown in Figure 50b. With more accurate ab initio
calculations of the transition state barriers E∗, the process
can be enhanced.
Kinetic analysis shows that although thermodynamic

requirements for yield can be relatively low (strains of 6–
7%), overcoming activation barriers the strain level must
exceed 15–20% (depending on chiral symmetry of the tube
and the test duration). At this high strain level, nanotubes
can in principle undergo brittle failure through “direct”
bond breaking via a series of metastable radical states
that include dangling bonds or unpaired electrons. We
have recently [281] performed quantum mechanical struc-
ture relaxations which determined the energies of several
of the first metastable defect states corresponding to one,
two, or three broken bonds in the lattice. As an exam-
ple, Figure 49 shows a singular broken-bond structure that
emerges as metastable at approximately 16% tensile strain.
From a chemistry viewpoint, such structures represent a
biradical, R· + ·R, that would immediately recombine under
normal conditions. Unlike the Stone–Wales defect, these vir-
tual defects do not exist in free lattice structures but can
only emerge beyond the bifurcation point at high tension.

(a) (b)

Figure 50. Activation barriers at ! = 5% (a), and breaking strain values
(b) of CNT. Reprinted with permission from [280], G. G. Samsonidze
and B. I. Yakobson, Phys. Rev. Lett. 88 (2002). © 2002, American Phys-
ical Society.

5.1.3. Welding and Reversible Failure
The possibility of nanotube coalescence, which is either a
lateral or a butt-welding process of merging separate enti-
ties into one, has been investigated in detail due to its
importance in formation of CNT networks, and therefore
on overall electrical conductance, thermal transport, and
mechanical strength [282]. We have discovered a mechanism
of welding that consists exclusively of Stone–Wales bond
rotations. It therefore appears as a feasible physical process
at elevated temperatures or under irradiation. An example is
shown in Figure 51 that illustrates the intermediate steps (as
numbered) of (10,10)-CNT pair butt-welding, at high tem-
perature or under irradiation (e-beam or laser):

�10: 10�+ �10: 10�→ �10: 10� or

�15: 0�+ �15: 0�→ �15: 0� (109)

Emerging intermediate structures must possess unique
and possibly useful electronic properties as they repre-
sent quantum dots with already attached nanotube-wires.
Detailed calculations of the intermediate energies, E, shown
in Figure 52 allow us to compare the energy barriers. The
main data are obtained with TBA; open squares correspond
to density functional results, and open circles are obtained
from high-temperature molecular dynamics simulations. The
data also show a possible reduction of the barriers by appli-
cation of external mechanical forces, F , compression or ten-
sion, in transition from energy to enthalpy criteria, H = E+
FL. This is important for engineering new nanostructures
through stretching [283] or welding [281], as well as for
improvement of bulk materials due to increased connectivity
of the tubules in CNT bundles or possibly in composites.

5.2. Silicon Nanowires: Structure
and Energetics

Although SiNWs possess much weaker bonds, they have
higher rigidity (originating from the higher coordination
[284, 285]) making the tiny wires extremely fragile com-
pared to carbon nanotubes. Any practical construction of
Si nanowires should not be too small in order to allow
them to be sustainable in natural ambient conditions. Obvi-
ously, extremely thin (d < 1 nm) 1D Si structures could not
emulate bulk structuring because all the atoms are actually
located on a surface. Therefore, reconstruction will conform
them into clusters or a chain of clusters even at zero temper-
ature. The modeling of cluster chains considered as a SiNW
currently accounts for a big portion of theoretical studies
[286, 287]. Recently, a chain of fullerene-like clustered Si20

0 8 18 33 48 68

Figure 51. Steps of (10,10)+ (10,10) coalescence via Stone–Wales bond
rotations.
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Figure 52. Computed energies of intermediate structures in coales-
cence. Reprinted with permission from [282], Y. F. Zhao et al., Phys.
Rev. Lett. 88 (2002). © 2002, American Physical Society.

was found to have a reasonably low energy [288]. If one adds
more atomic layers to the cluster, chains will systematically
accumulate strain, become distorted, and rapidly increase
the energy of the system. Above a particular thickness (d ∼
1�5 nm for pristine SiNW), crystalline whiskers are more
favorable and the process of faceting is the decisive factor
to conserve energy.
Conventionally, the equilibrium shape of a faceted crystal

is determined by minimization of Wulff’s free energy, which
neglects the interaction of facets (edge effect) and assumes a
fixed bulk. This is a good approximation for relatively large
crystals but poorly applicable to ultrathin SiNWs with d <
10 nm.
In [289] we generalized Wulff’s free energy as

F = sHs + Ee + Eb (110)

to include the energy of matching the adjacent facets, Ee,
and certain changes in the bulk, Eb, including possible inter-
nal granularity or elastic strain toward lowering the overall
energy. Because the shape of a crystalline SiNWs is scal-
able with its diameter, the energy of an isomorphic family
(with the same shape but various thickness) can be evaluated
without full-scale computation. Several families of pristine
whiskers with four-, five-, and six-fold symmetry in cross-
section have been investigated and the relative energy is
shown in Figure 53.
Surprisingly, a polycrystalline family has the lowest over-

all energy at d < 6 nm due to the perfect matching of
the facets along the edges with very little cost to the bulk
energy. This type of SiNW also has an important growth
kinetics property: the dimer rows along the axis make the
adatoms diffuse much faster in the axis direction than along
the circumference.
Because the structures of the SiNW will influence their

properties [290], the creation of new structures with con-
trolled thickness and crystallographic orientation [291] is

0

0.2

0.4

0.6

2 4 6 8 d (nm)

Γ0 (eV)

Figure 53. Energy and structure (only cross-section on the right three)
of three types of SiNWs. On the energy curve, diamonds and squares
denote two surface reconstructions of the square SiNW; solid and open
pentagons denote two types of pentagonal SiNWs. The five radial lines
in the pentagonal model (right bottom) are {111} interfaces of stack-
ing faults. Reprinted with permission from [277], Y. F. Zhao and B. I.
Yakobson, Phys. Rev. Lett. 91, 035501 (2003).

very important in practical applications. The new crystal-
lographic structure with cross-sectional fivefold symmetry
potentially provides opportunity for novel properties. It is
known that the unique growth kinetics make it possible to
produce SiNWs with identical crystallographic orientation
(i.e., [110] direction).
In recent experiments, bundles of pristine SiNWs with

diameters of 3–7 nm and lengths of >100 nm were formed in
high vacuum [288] (see Fig. 54), which might be of the pen-
tagonal type according to its growth kinetics. The hexagonal
single crystalline SiNW with hydrogen-terminated facets has
also been recently identified in [292].

Figure 54. Bundles of the pristine SiNW, produced in high vaccum.
Reprinted with permission from [288], B. Marsen and K. Sattler, Phys.
Rev. B 60, 11593. (1999). © 1999, American Physical Society.
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