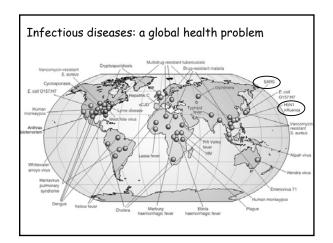

Pathogens and the immune system

Lecture 8


Review of lecture 7

- · Science
 - "Science is the human activity of seeking natural explanations for what we observe in the world around us."
- Engineering
 - Systematic design, production and operation of technical systems to meet practical human needs under specified constraints
 - Six steps of the engineering design method

How can technology help?

Science

1. Understanding biology: pathogens & disease immune system

Engineering

- 2. Developing vaccines: from idea to product
 - vaccine design
 - production
 - testing safety & effectiveness
- 3. Addressing challenges for vaccine development:
 Developed vs. developing countries
 The AIDS vaccine challenge

Lecture map

1. The players: Types of pathogens

Cells of the Immune system

2. Types of Immunity

2A. Physical barriers

2B. Innate Immunity

Macrophages Neutrophils Complement proteins Splinter example

2C. Adaptive Immunity

B-lymphocytes: ANTIBODIES T-lymphocytes: Cell-mediated Immunologic MEMORY

Lecture map

1. The players: Types of pathogens

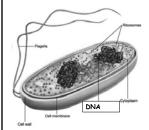
Cells of the Immune system

2. Types of Immunity

2A. Physical barriers

2B. Innate Immunity

Macrophages Neutrophils Complement proteins Splinter example

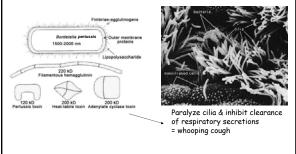

2C. Adaptive Immunity

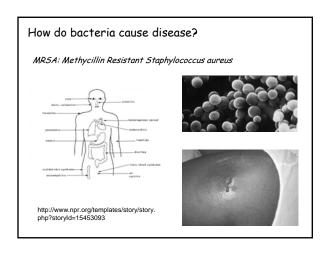
B-lymphocytes: ANTIBODIES T-lymphocytes: Cell-mediated Immunologic MEMORY

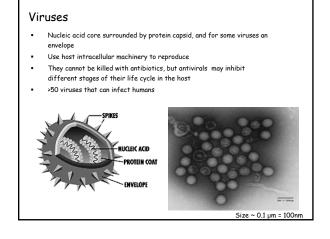
Types of pathogens Escherichia coli 0147:H7 Bordetella pertussis (wh Bacteria SARS- Severe A. Influenza (Flu) HIV (AIDS) Hepatitis C virus ola/ Marburg viruses Candida albicans Fungi

Bacteria

- Cells with membrane and cell wall (usually)
- Can survive & reproduce outside host
- Can be killed or inhibited by antibiotics
- Responsible for >90% of hospital infections

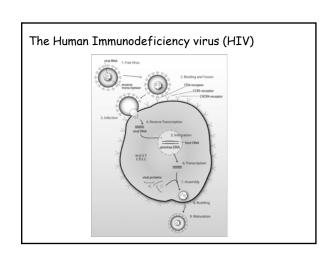


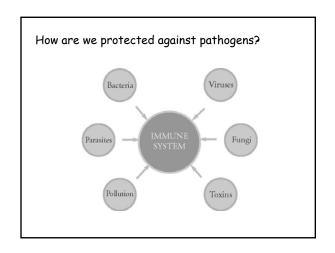


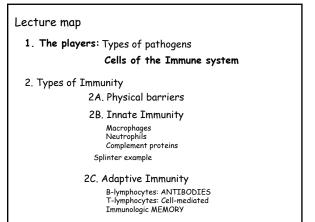

Size ~ 1 µm

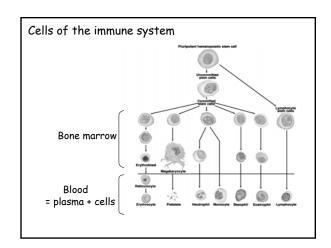
How do bacteria cause disease?

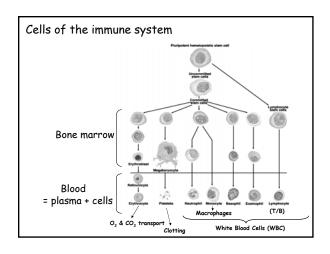
- Invade host
- Reproduce
- Produce toxins which disturb function of normal cells

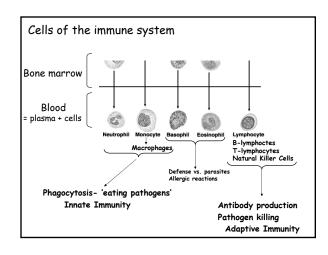


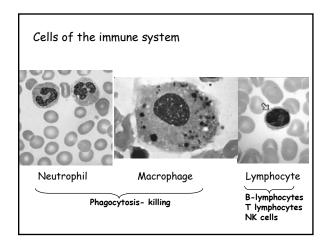

How do viruses cause disease?


- 1. Virus invades host cell
 - Binds to cell membrane receptors
 - Endocytosis brings virus into cell
- 2. Virus takes over cell
 - Use viral nucleic acid and host cell resources to make new viral nucleic acid and proteins $% \left(1\right) =\left(1\right) \left(1\right) \left($
- 3. More virus is released from host cell
 - Virus causes host cell to lyse $\ensuremath{\mathsf{OR}}$
 - Viral particles bud from host cell surface


How do viruses cause disease? | The purior | Protein cost | Prote


The Human Immunodeficiency virus (HIV) Viral components: -nucleic acid core (DNA/RNA) -protein capsid -envelope -Glycoproteins Capsid Capsi





Question:

 Based on your understanding of the characteristics of bacteria, viruses, and blood cells, identify which item best represents a bacterium, a virus and a blood cell and be able to explain why you chose each.

Lecture map

1. The players: Types of pathogens

Cells of the Immune system

2. Types of Immunity

2A. Physical barriers

2B. Innate Immunity

Macrophages Neutrophils Complement proteins Splinter example

2C. Adaptive Immunity

B-lymphocytes: ANTIBODIES T-lymphocytes: Cell-mediated Immunologic MEMORY

Types of Immunity Physical Barriers - skin (2 square meters!) - mucose membranes (400 square meters!) Innate Immune System - General inflammatory response against pathogens outside of the cell Adaptive Immune System - Can adapt to defend against any specific invader inside or outside of the cell - Important when innate immunity cannot defend against the attack

What happens when you get a splinter?

- · Pathogen makes it past a physical barrier
- · Symptoms?
 - Red, swollen, hot, pus
- · What causes these symptoms?

-Provides 'Immune Memory'

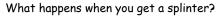
- The Innate immune system is kicking into gear!
- · Usually innate immune system can take care of it

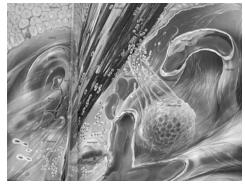
The Innate Immune System: 3 main weapons

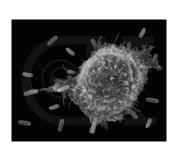
-Activated Macrophages

Phagocyte ('eat') invading pathogens Produce chemicals that:

- increase blood flow (redness & heat)
- cause 'fuild leaking' (swelling)
- recruit neutrophils (pus)


Present antigen to adaptive immune system


-Complement proteins


Present in tissue and blood

Attach to surface of bacteria and viruses targeting them for phagocytosis

Recruit other immune cells from blood

Macrophage attacking E.coli SEM x 8,800 ©Denis Kunkel

Question:

 Based on your understanding of the innate immune system, represent a macrophage during phagocytosis

Lecture map

- 1. The players: Types of pathogens

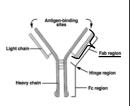
 Cells of the Immune system
- 2. Types of Immunity
 - 2A. Physical barriers
 - 2B. Innate Immunity

Macrophages Neutrophils Complement proteins Splinter example

2C. Adaptive Immunity

B-lymphocytes: ANTIBODIES T-lymphocytes: Cell-mediated Immunologic MEMORY

The Adaptive Immune System


- Recognizes antigens (molecular signatures) <u>specific</u> for each pathogen
- Effective against both intra- and extracellular pathogens
- Two main components: Humoral immunity
 - Relies on <u>Antibodies</u> produced by **B**-lymphocytes
 - Fights pathogens outside of cells

Cell-mediated Immunity

- Relies on specific receptors on the surface of **T**-lymphocytes
- Fights pathogens inside of cells

What is an antibody?

- · Bridge between:
 - Pathogen
- Tool to kill it
- Antibodies have two important regions:
 - Fab region:
 - Binds antigen
 - Binds surface of virus infected cell
 - Fc region:
 - Binds macrophages and neutrophils, induces phagocytosis
 - Binds natural killer cell, induces killing

The Adaptive Immune response: humoral immunity

How do antibodies work?

- Neutralization: Blocking the biological activity of toxin or pathogen *ie. Blocking access*
- 2. **Bridge**: Bringing together pathogens and phagocytes

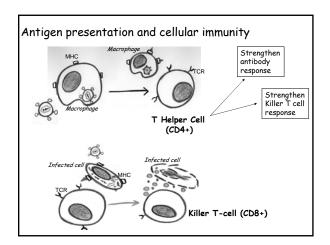
The Adaptive Immune response: humoral immunity Target cell 1. Neutralization Aucrophage 2. Bridge: pathogen-phagocyte

Question:

- Which components of your kit are most like antibodies?
- Arrange the components of the kit to demonstrate how these antibodies "bridge" a pathogen and the tool to kill it?

The Adaptive Immune response: humoral immunity

- · How are antibodies made?
 - B cells
 - · Lymphocytes that make antibodies
 - · Have B cell receptors on surface
 - 100 million different types of B cells, each with different surface receptors
 - B cell receptors are so diverse they can recognize every organic molecule
 - When a B cell binds antigen:
 - Proliferates In one week, clone of 20,000 identical B cells
 - · Secretes antibody

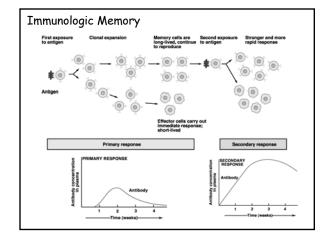

Clonal selection and proliferation First exposure to antigen Clonal expansion (proliferation) Antigen B cells

The Adaptive Immune response: cell-mediated immunity

- · How do we kill virus once inside the cell?
 - Antibodies cannot get to it
 - Need T cells
- · T Cells
 - Recognize protein antigens
 - When bind antigen, undergo clonal selection
 - Three types of T Cells:
 - Killer T Cells (Cytotoxic T Lymphocytes CTLs)
 - Helper T Cells (orchestrate adaptive immune response)
 - Regulatory T Cells

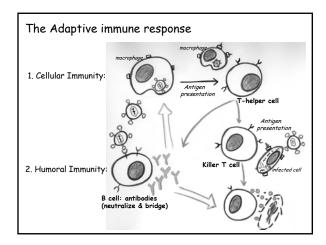
How do T Cells recognize Virus-Infected Cells?

- All cells have Major Histocompatibility Complex (MHC) molecules on surface
- T Cells inspect MHC proteins and use this as a signal to identify infected cells
- Antigens (bits of pathogens) get loaded into MHC molecules:
 - \bullet When virus invades target cell, fragments of viral protein are loaded onto MHC proteins
 - \cdot 'Profesional' Antigen Presentation Cells (APCs= phagocytes of innate immunity)



Question:

- Demonstrate how the T cell can identify a virus infected cell: antigen presentation
- Why is this component of the adaptive immune system a significant advance over the innate immune system?


Immunologic Memory

- <u>First time</u> adaptive immune system is activated by an antigen:
 - Build up a clone of B cells and T cells
 - Takes about a week
 - After infection is over, most die off
 - Some remain memory cells
- <u>Second time</u> adaptive immune system is activated by that antigen:
 - Memory cells are easier to activate
 - Response is much faster no symptoms

The adaptive Immune Response

Putting it together...

Summary of lecture 8

- · Pathogens: Bacteria and Virus
- · Levels of Immunity:
 - Barriers → First line of defense
 - Innate → Inflammation
 - Phagocytes
 - · Complement
 - Adaptive \rightarrow Immunologic memory
 - · Antibody mediated immunity

 - Cell mediated immunity → Pathogens within cells
 Diversity to recognize 100 million antigens

Next time

- · How do vaccines work?
- Vaccine development:
 - Design
 - Production
 - · Testing safety & efficacy

· Challenges of vaccine development

The end.