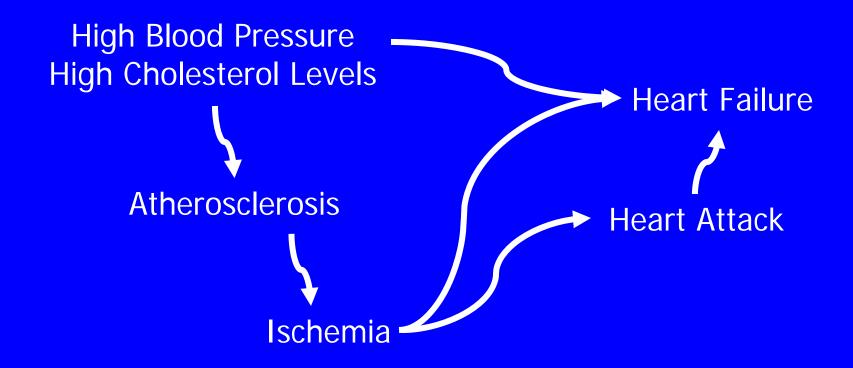

Bioengineering and World Health

Lecture Twenty: Clinical Trials

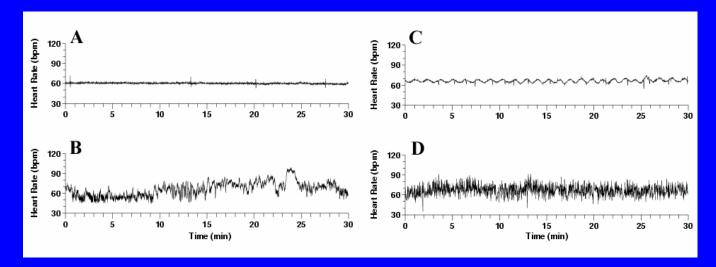


Overview of Today

- Review of Last Time (Heart Disease)
- What is a Clinical Trial?
- Clinical Trial Data and Reporting
- Clinical Trial Example: Artificial Heart
- Clinical Trial Example: Vitamin E
- Planning a Clinical Trial

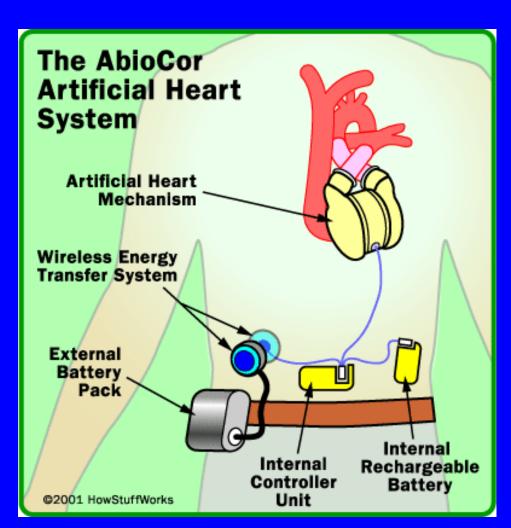
REVIEW OF LAST TIME

Progression of Heart Disease

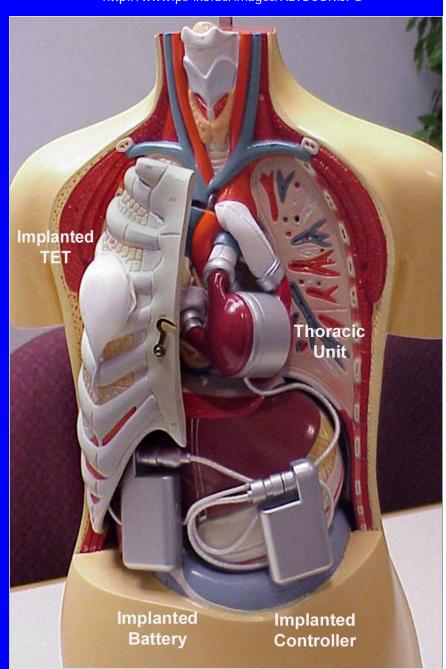

Heart Failure Review

- What is heart failure?
 - Occurs when left or right ventricle loses the ability to keep up with amount of blood flow
 - http://www.kumc.edu/kumcpeds/cardiology/movies/s ssmovies/dilcardiomyopsss.html
- How do we treat heart failure?
 - Heart transplant
 - Rejection, inadequate supply of donor hearts
 - LVAD
 - Can delay progression of heart failure
 - Artificial heart

Which one is a healthy heart?


Heart Failure

Heart Failure

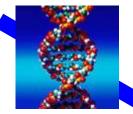


Healthy Heart

Atrial Fibrilation

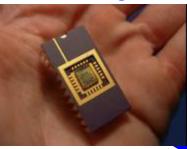
http://static.howstuffworks.com/gif/artificial-heart-abiocor-diagram.gif

CLINICAL TRIALS


Take-Home Message

- Clinical trials allow us to measure the difference between two groups of human subjects
- There will always be some difference between selected groups
- By using statistics and a well designed study, we can know if that difference is meaningful or not

Science of Understanding


Disease

Bioengineering

Emerging Health Technologies

Ethics of research

Clinical Trials

Cost-Effectiveness

Adoption & Diffusion

- poor performance
- safety concerns
- ethical concerns
- legal issues
- social issues
- economic issues

Clinical Studies Clinical Trials Epidemiologic Controlled **Observational** Single-Arm Two-Arm

Types of Clinical Studies

- Hypothesis Generation
 - Case study, case series: examine patient or group of patients with similar illness
- Hypothesis Testing:
 - Observational:
 - Identify group of patients with and without disease. Collect data. Use to test our hypothesis.
 - Advantage: Easy, cheap.
 - Disadvantage: Bias. Can't control the interventional to decisively show cause and effect.

Types of Clinical Studies

Hypothesis Testing:

- Experimental:
 - Clinical trial: Research study to evaluate effect of an intervention on patients.
 - Isolate all but a single variable and measure the effect of the variable.
 - Done prospectively: Plan, then execute.
 - Single arm study: Take patients, give intervention, compare to baseline. Can suffer from placebo effect.
 - Randomized clinical trials: Different subjects are randomly assigned to get the treatment or the control.

Single and Two Arm Studies

Single-Arm Study

- Give treatment to all patients
- Compare outcome before and after treatment for each patient
- Can also compare against literature value

Two Arm Study

- Split patients in trial into a control group and an experimental group
- Can blind study to prevent the placebo affect

Phases of Clinical Trials

Phase I

Assess safety of drug on 20-80 healthy volunteers

Phase II

 Drug given to larger group of patients (100-300) and both safety and efficacy are monitored

Phase III

- Very large study monitoring side affects as well as effectiveness versus standard treatments
- Phase IV (Post-Market Surveillance)
 - Searches for additional drug affects after drug has gone to market

CLINICAL TRIAL DATA AND REPORTING

Examples of Biological Data

Continuously variable

 Core body temperature, height, weight, blood pressure, age

Discrete

 Mortality, gender, blood type, genotype, pain level

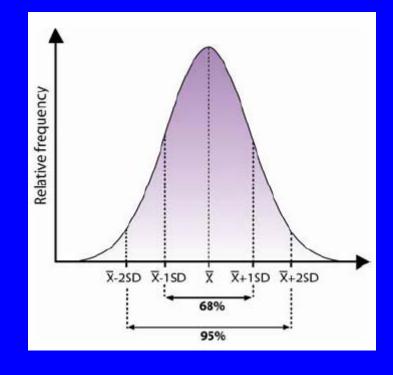
Biological Variability

Variability

 Most biological measurement vary greatly from person to person, or even within the same person at different times

The Challenge

We need some way of knowing that the differences we're seeing are due to the factors we want to test and not some other effect or random chance.


Descriptive Statistics

- Mode
 - Most common value
- Mean

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Standard Deviation

$$\sigma = \sqrt{\sum_{i=1}^{n} \frac{(x - \overline{x})^2}{n}}$$

Example: Blood Pressure

Measurement

 Get into groups of 4 and take each others blood pressure for the next 5-10min

Reporting

In those same groups, calculate the mean, mode and standard deviation of the class

Analysis

- Is the data normally distributed?
- Is there a difference between sides of the classroom?
- Does it mean anything?

EXAMPLE: ABIOCOR TRIAL

Clinical Trial of AbioCor

Goals of Initial Clinical Trial

- Determine whether AbioCor[™] can extend life with acceptable quality for patients with less than 30 days to live and no other therapeutic alternative
- To learn what we need to know to deliver the next generation of AbioCor, to treat a broader patient population for longer life and improving quality of life.

Clinical Trial of AbioCor

- Patient Inclusion Criteria (highlights)
 - Bi-ventricular heart failure
 - Greater than eighteen years old
 - High likelihood of dying within the next thirty days
 - Unresponsive to maximum existing therapies
 - Ineligible for cardiac transplantation
 - Successful AbioFit[™] analysis
- Patient Exclusion Criteria (highlights)
 - Heart failure with significant potential for reversibility
 - Life expectancy >30 days
 - Serious non-cardiac disease
 - Pregnancy
 - Psychiatric illness (including drug or alcohol abuse)
 - Inadequate social support system

Prevention of Heart Disease

■ 1990s:

 Small series of trials suggested that high doses of Vitamin E might reduce risk of developing heart disease by 40%

1996: Randomized clinical trial:

- 1035 patients taking vitamin E
- 967 patients taking placebo
- Vitamin E provides a protective effect

Prevention of Heart Disease

- 2000: pivotal clinical trial
 - 9,541 patients
 - No benefit to Vitamin E
 - Followed for 7 years: may increase risk of heart disease

What happened?

Challenges: Clinical Research

- Early studies, small # patients:
 - Generate hypotheses
- Larger studies
 - Rigorously test hypotheses
- Due to biological variability:
 - Larger studies often contradict early studies
- Recent study:
 - 1/3 of highly cited studies later contradicted!
 - More frequent if patients aren't randomized

Clinical Trial of AbioCor

Clinical Trial Endpoints

- All-cause mortality through sixty days
- Quality of Life measurements
- Repeat QOL assessments at 30-day intervals until death

Number of patients

- Initial authorization for five (5) implants
- Expands to fifteen (15) patients in increments of five (5) if 60-day experience is satisfactory to FDA

Consent Form

- Link to Consent Form:
 - http://www.sskrplaw.com/gene/quinn/informe dconsent.pdf
- Link to other Documents about lawsuit
 - http://www.sskrplaw.com/gene/quinn/index.h tml

Prevention of Heart Disease

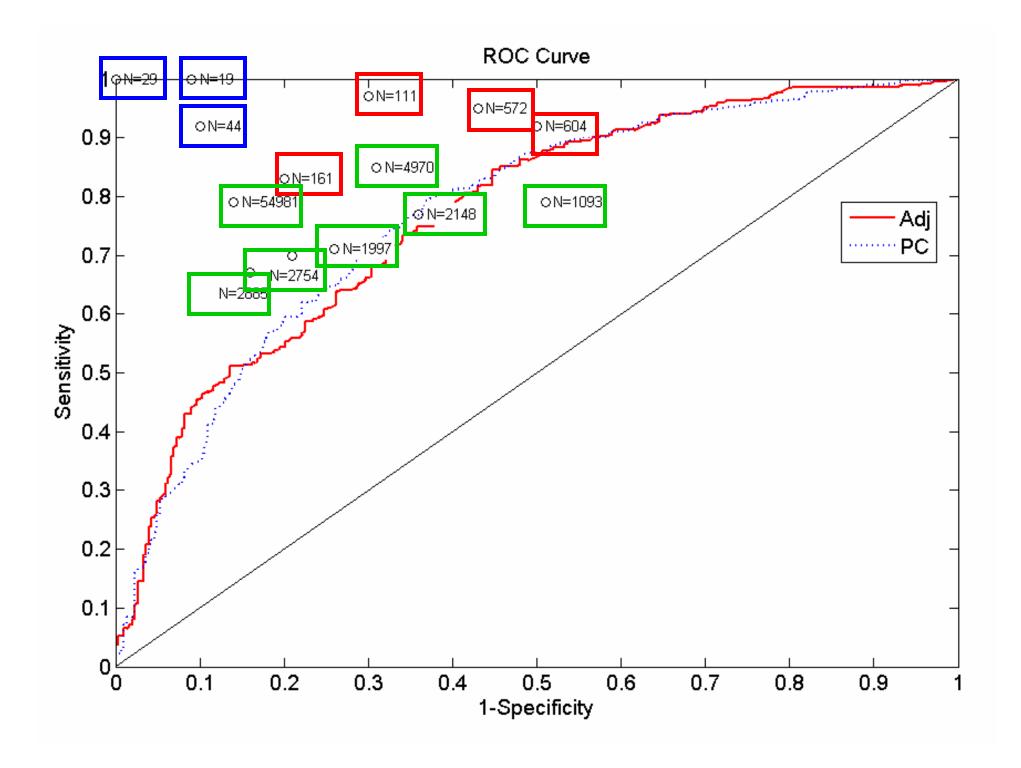
■ 1990s:

 Small series of trials suggested that high doses of Vitamin E might reduce risk of developing heart disease by 40%

1996: Randomized clinical trial:

- 1035 patients taking vitamin E
- 967 patients taking placebo
- Vitamin E provides a protective effect

Prevention of Heart Disease


- 2000: pivotal clinical trial
 - 9,541 patients
 - No benefit to Vitamin E
 - Followed for 7 years: may increase risk of heart disease

What happened?

Challenges: Clinical Research

- Early studies, small # patients:
 - Generate hypotheses
- Larger studies
 - Rigorously test hypotheses
- Due to biological variability:
 - Larger studies often contradict early studies
- Recent study:
 - 1/3 of highly cited studies later contradicted!
 - More frequent if patients aren't randomized

PLANNING A CLINICAL TRIAL

Planning a Clinical Trial

■ Two arms:

- Treatment group
- Control group

Outcome:

- Primary outcome
- Secondary outcomes

Sample size:

- Want to ensure that any differences between treatment and control group are real
- Must consider \$\$ available

Example – Planning a Clinical Trial

- New drug eluting stent
- Treatment group:
- Control group:
- Primary Outcome:
- Secondary Outcomes:

Design Constraints

Constraints

- Cost, time, logistics
- The more people involved in the study, the more certain we can be of the results, but the more all of these factors will increase

Statistics

 Using statistics, we can calculate how many subjects we need in each arm to be certain of the results

Sample Size Calculation

There will be some statistical uncertainty associated with the measured restenosis rate

Goal:

- Uncertainty << Difference in primary outcome between control & treatment group
- Choose our sample size so that this is true

Types of Errors in Clinical Trial

Type I Error:

 We mistakenly conclude that there is a difference between the two groups, when in reality there is no difference

Type II Error:

 We mistakenly conclude that there is not a difference between the two, when in reality there is a difference

Choose our sample size:

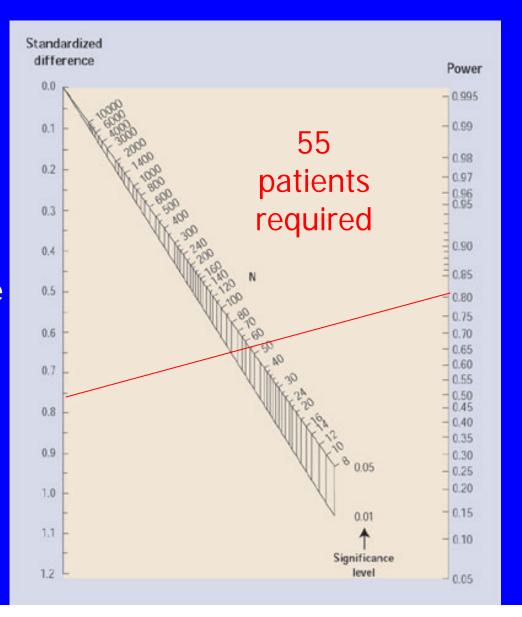
- Acceptable likelihood of Type I or II error
- Enough \$\$ to carry out the trial

Types of Errors in Clinical Trial

Type I Error:

- We mistakenly conclude that there IS a difference between the two groups
- p-value probability of making a Type I error
- Usually set p = 1% 5%

Type II Error:


- We mistakenly conclude that there IS NOT a difference between the two
- Beta probability of making a Type II error
- Power
 - = 1 beta
 - = 1 probability of making a Type II error
- Usually set beta = 10 20%

How do we calculate n?

- Select primary outcome
- Estimate expected rate of primary outcome in:
 - Treatment group
 - Control group
- Set acceptable levels of Type I and II error
 - Choose p-value
 - Choose beta
- Use sample size calculator
 - HW14

Drug Eluting Stent - Sample Size

- Treatment group:
 - Receive stent
- Control group:
 - Get angioplasty
- Primary Outcome:
 - 1 year restenosis rate
- Expected Outcomes:
 - Stent: 10%
 - Angioplasty: 45%
- Error rates:
 - p = .05
 - Beta = 0.2

Data & Safety Monitoring Boards

DSMB:

- Special committees to monitor interim results in clinical trials.
- Federal rules require all phase III trials be monitored by DSMBs.
- Can stop trial early:
 - New treatment offered to both groups.
 - Prevent additional harm.

DSMBs

- New treatment for sepsis:
 - New drug
 - Placebo
 - n = 1500
- Interim analysis after 722 patients:
 - Mortality in placebo group: 38.9%
 - Mortality in treatment group: 29.1%
 - Significant at the p = 0.006 level!
- Should the study be stopped?

DSMBs

Decision:

- No
- Neither researchers nor subjects were informed

Outcome:

- Mortality in placebo group: 33.9%
- Mortality in treatment group: 34.2%
- Difference was neither clinically nor statistically significant!
- Informed consents should be modified to indicate if a trial is monitored by a DSMB.

How to Get Involved

- Government Database of Trials
 - <u>www.clinicaltrials.gov</u>