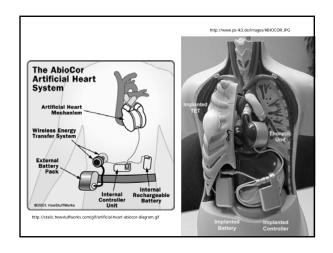
BIOE 301

Lecture Twenty: Clinical Trials

Mike Cordray mikec@rice.edu

REVIEW OF LAST TIME

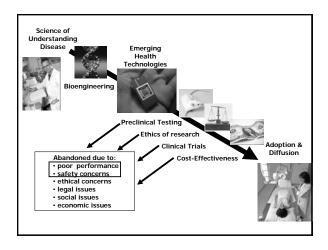
Heart Failure Review

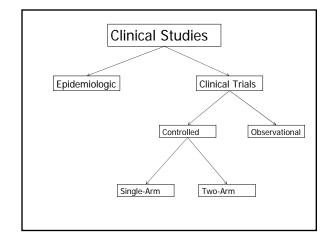

- What is heart failure?
 - Occurs when left or right ventricle loses the ability to keep up with amount of blood flow
 - http://www.kumc.edu/kumcpeds/cardiology/movies/s ssmovies/dilcardiomyopsss.html
- How do we treat heart failure?
 - Heart transplant
 - Rejection, inadequate supply of donor hearts
 - LVAD
 - Can delay progression of heart failure
 - Artificial heart

Overview of Today

- Review of Last Time (Heart Disease)
- What is a Clinical Trial?
- Clinical Trial Data and Reporting
- Clinical Trial Example: Artificial Heart
- Clinical Trial Example: Vitamin E
- Planning a Clinical Trial

Progression of Heart Disease High Blood Pressure High Cholesterol Levels Atherosclerosis Heart Failure Heart Attack


Which one is a healthy heart? Heart Failure Heart Failure Heart Failure Heart Failure Heart Failure Atrial Fibrilation



CLINICAL TRIALS

Take-Home Message

- Clinical trials allow us to measure the difference between two groups of human subjects
- There will always be some difference between selected groups
- By using statistics and a well designed study, we can know if that difference is meaningful or not

Types of Clinical Studies

- Epidemiologic Hypothesis Generation
 - Observe a group of patients and look for common factors
 - AIDS in the 1980s
 - Dr. Snow and the Broad St. Pump
- Clinical Trial Hypothesis Testing
 - Determine the difference, if any, between two groups of patients

Types of Clinical Trials

- Observational Studies
 - Observe two groups already existing, and review data to determine differing factors between groups
 - Ex. What behaviors are prevalent in lung cancer patients but not in those without the disease
 - Problems Bias, and lack of control
- Controlled Study
 - Introduce difference between two selected groups

Single and Two Arm Studies

- Single-Arm Study
 - Give treatment to all patients
 - Compare outcome before and after treatment for each patient
 - Can also compare against literature value
- Two Arm Study
 - Split patients in trial into a control group and an experimental group
 - Can blind study to prevent the placebo affect

Phases of Clinical Trials

- Phase I
 - Assess safety of drug on 20-80 healthy volunteers
- Phase II
 - Drug given to larger group of patients (100-300) and both safety and efficacy are monitored
- Phase III
 - Very large study monitoring side affects as well as effectiveness versus standard treatments
- Phase IV (Post-Market Surveillance)
 - Searches for additional drug affects after drug has gone to market

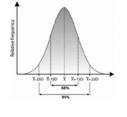
CLINICAL TRIAL DATA AND REPORTING

Examples of Biological Data

- Continuously variable
 - Core body temperature, height, weight, blood pressure, age
- Discrete
 - Mortality, gender, blood type, genotype, pain level

Biological Variability

- Variability
 - Most biological measurement vary greatly from person to person, or even within the same person at different times
- The Challenge
 - We need some way of knowing that the differences we're seeing are due to the factors we want to test and not some other effect or random chance.


Descriptive Statistics

- Mode
 - Most common value
- Mean

$$\overline{x} = \sum_{i=1}^{n} \frac{x_{i}}{n}$$

Standard Deviation

EXAMPLE: ABIOCOR TRIAL

Example: Blood Pressure

- Measurement
 - Get into groups of 4 and take each others blood pressure for the next 5-10min
- Reporting
 - In those same groups, calculate the mean, mode and standard deviation of the class
- Analysis
 - Is the data normally distributed?
 - Is there a difference between sides of the classroom?
 - Does it mean anything?

Clinical Trial of AbioCor

- Goals of Initial Clinical Trial
 - Determine whether AbioCor™ can extend life with acceptable quality for patients with less than 30 days to live and no other therapeutic alternative
 - To learn what we need to know to deliver the next generation of AbioCor, to treat a broader patient population for longer life and improving quality of life.

Clinical Trial of AbioCor

- Patient Inclusion Criteria (highlights)
 - Bi-ventricular heart failure
 - Greater than eighteen years old
 - High likelihood of dying within the next thirty days
 - Unresponsive to maximum existing therapies
 - Ineligible for cardiac transplantation
 - Successful AbioFit[™] analysis
- Patient Exclusion Criteria (highlights)
 - Heart failure with significant potential for reversibility
 - Life expectancy >30 days
 - Serious non-cardiac disease
 - Pregnancy
 - Psychiatric illness (including drug or alcohol abuse)
 - Inadequate social support system

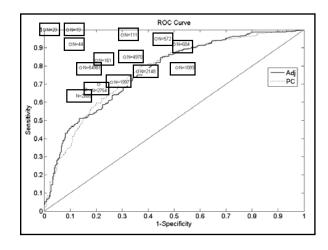
Clinical Trial of AbioCor

- Clinical Trial Endpoints
 - All-cause mortality through sixty days
 - Quality of Life measurements
 - Repeat QOL assessments at 30-day intervals until death
- Number of patients
 - Initial authorization for five (5) implants
 - Expands to fifteen (15) patients in increments of five (5) if 60-day experience is satisfactory to FDA

Consent Form

- Link to Consent Form:
 - http://www.sskrplaw.com/gene/quinn/informe dconsent.pdf
- Link to other Documents about lawsuit
 - http://www.sskrplaw.com/gene/quinn/index.h tml

EXAMPLE: VITAMIN E


The Study

- Pilot Study
 - In the early 1990's, small study done which showed taking vitamin E reduced risk of heart disease
 - Regularly taking high doses shown to reduce risk by up to 40%
- Media Coverage
 - These studies received huge amounts of coverage in the media

Follow-Up

- **1996**
 - Study compared 1,035 patients on vitamin E and 967 on placebo
 - Demonstrated a positive effect of the vitamin
- **2000**
 - Very large study (9,541 patients) shows vitamin E has no effect
 - Study tracked patients for 7 years and found evidence that vitamin E in large doses might actually be harmful

PLANNING A CLINICAL TRIAL

Planning a Clinical Trial

- Two arms:
 - Treatment group
 - Control group
- Outcome:
 - Primary outcome
 - Secondary outcomes
- Sample size:
 - Want to ensure that any differences between treatment and control group are real
 - Must consider \$\$ available

Example – Planning a Clinical Trial

- New drug eluting stent
- Treatment group:
- Control group:
- Primary Outcome:
- Secondary Outcomes:

Design Constraints

- Constraints
 - Cost, time, logistics
 - The more people involved in the study, the more certain we can be of the results, but the more all of these factors will increase
- Statistics
 - Using statistics, we can calculate how many subjects we need in each arm to be certain of the results

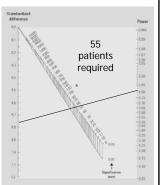
Sample Size Calculation

- There will be some statistical uncertainty associated with the measured restenosis rate
- Goal:
 - Uncertainty << Difference in primary outcome between control & treatment group
 - Choose our sample size so that this is true

Types of Errors in Clinical Trial

- Type I Error:
 - We mistakenly conclude that there is a difference between the two groups, when in reality there is no difference
- Type II Error:
 - We mistakenly conclude that there is not a difference between the two, when in reality there is a difference
- Choose our sample size:
 - Acceptable likelihood of Type I or II error
 - Enough \$\$ to carry out the trial

Types of Errors in Clinical Trial


- Type I Error:
 - We mistakenly conclude that there IS a difference between the two groups
 - p-value probability of making a Type I error
 - Usually set p = 1% 5%
- Type II Error:
 - We mistakenly conclude that there IS NOT a difference between the two
 - Beta probability of making a Type II error
 - Power
 - = 1 beta
 - = 1 probability of making a Type II error
 - Usually set beta = 10 20%

How do we calculate n?

- Select primary outcome
- Estimate expected rate of primary outcome in:
 - Treatment group
 - Control group
- Set acceptable levels of Type I and II error
 - Choose p-value
 - Choose beta
- Use sample size calculator
 - <u>HW14</u>

Drug Eluting Stent – Sample Size

- Treatment group:
 - Receive stent
- Control group:
 - Get angioplasty
- Primary Outcome:
- 1 year restenosis rate
- Expected Outcomes:
 - Stent: 10%
 - Angioplasty: 45%
- Error rates:
 - p = .05
 - Beta = 0.2

How to Get Involved

- Government Database of Trials
 - www.clinicaltrials.gov

Assignments Due Next Time

- HW14
- Project 6
- Exam Three:
 - April 11th
 - Take Home Exam