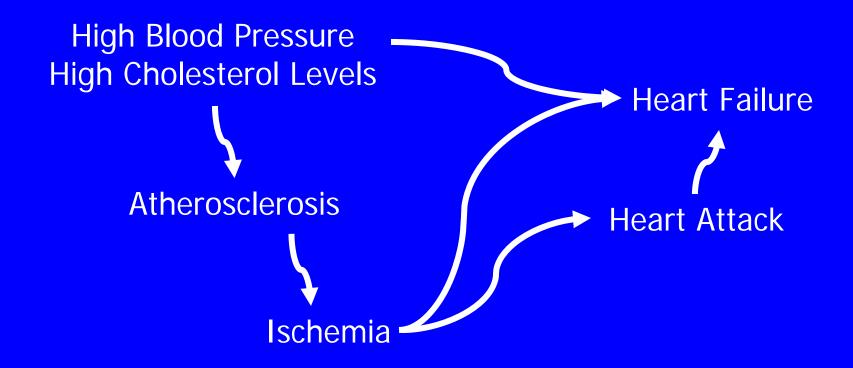

# BIOE 301

# Lecture Twenty: Clinical Trials

Mike Cordray mikec@rice.edu



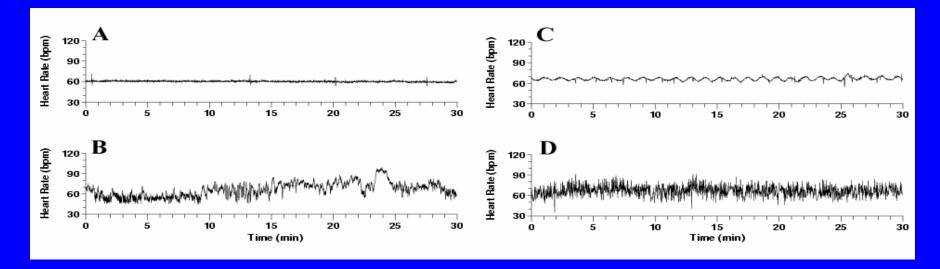

## Overview of Today

- Review of Last Time (Heart Disease)
- What is a Clinical Trial?
- Clinical Trial Data and Reporting
- Clinical Trial Example: Artificial Heart
- Clinical Trial Example: Vitamin E
- Planning a Clinical Trial

## **REVIEW OF LAST TIME**

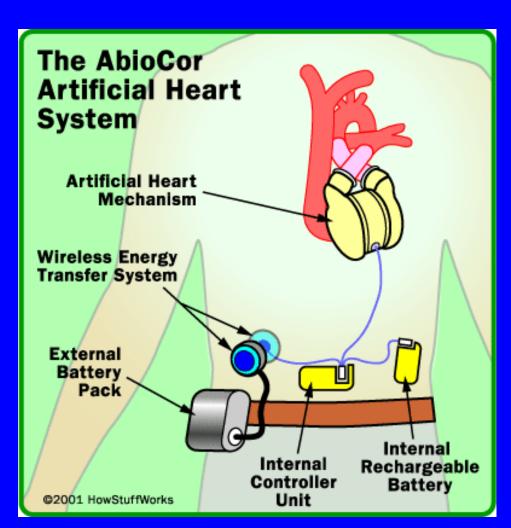
# Progression of Heart Disease



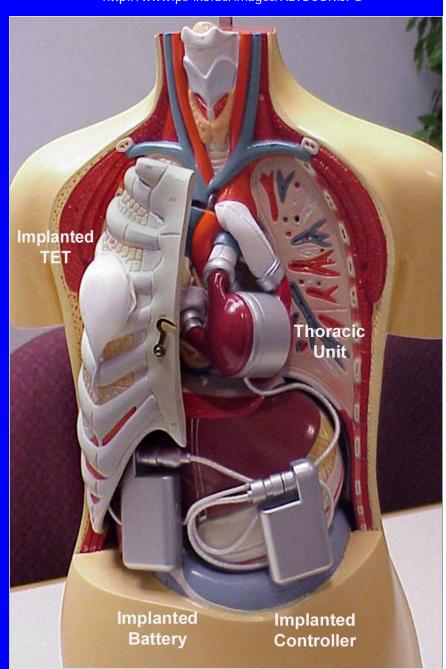

## Heart Failure Review

- What is heart failure?
  - Occurs when left or right ventricle loses the ability to keep up with amount of blood flow
  - http://www.kumc.edu/kumcpeds/cardiology/movies/s ssmovies/dilcardiomyopsss.html
- How do we treat heart failure?
  - Heart transplant
    - Rejection, inadequate supply of donor hearts
  - LVAD
    - Can delay progression of heart failure
  - Artificial heart

# Which one is a healthy heart?


**Heart Failure** 

Heart Failure




**Healthy Heart** 

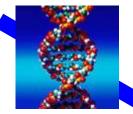
**Atrial Fibrilation** 



http://static.howstuffworks.com/gif/artificial-heart-abiocor-diagram.gif

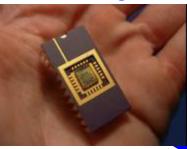


## CLINICAL TRIALS


# Take-Home Message

- Clinical trials allow us to measure the difference between two groups of human subjects
- There will always be some difference between selected groups
- By using statistics and a well designed study, we can know if that difference is meaningful or not

#### Science of Understanding


**Disease** 





Bioengineering

Emerging Health Technologies







Ethics of research

Clinical Trials

Cost-Effectiveness

## Adoption & Diffusion



- poor performance
- safety concerns
- ethical concerns
- legal issues
- social issues
- economic issues



# **Clinical Studies Clinical Trials** Epidemiologic Controlled **Observational** Single-Arm Two-Arm

# Types of Clinical Studies

- Epidemiologic Hypothesis Generation
  - Observe a group of patients and look for common factors
  - AIDS in the 1980s
  - Dr. Snow and the Broad St. Pump
- Clinical Trial Hypothesis Testing
  - Determine the difference, if any, between two groups of patients

# Types of Clinical Trials

- Observational Studies
  - Observe two groups already existing, and review data to determine differing factors between groups
    - Ex. What behaviors are prevalent in lung cancer patients but not in those without the disease
  - Problems Bias, and lack of control
- Controlled Study
  - Introduce difference between two selected groups

# Single and Two Arm Studies

### Single-Arm Study

- Give treatment to all patients
- Compare outcome before and after treatment for each patient
- Can also compare against literature value

## Two Arm Study

- Split patients in trial into a control group and an experimental group
- Can blind study to prevent the placebo affect

## Phases of Clinical Trials

#### Phase I

Assess safety of drug on 20-80 healthy volunteers

#### Phase II

 Drug given to larger group of patients (100-300) and both safety and efficacy are monitored

#### Phase III

- Very large study monitoring side affects as well as effectiveness versus standard treatments
- Phase IV (Post-Market Surveillance)
  - Searches for additional drug affects after drug has gone to market

# CLINICAL TRIAL DATA AND REPORTING

# **Examples of Biological Data**

### Continuously variable

 Core body temperature, height, weight, blood pressure, age

#### Discrete

 Mortality, gender, blood type, genotype, pain level

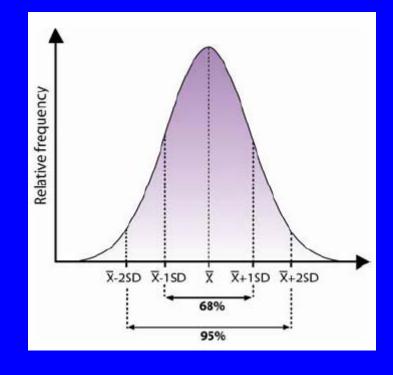
# Biological Variability

### Variability

 Most biological measurement vary greatly from person to person, or even within the same person at different times

## The Challenge

We need some way of knowing that the differences we're seeing are due to the factors we want to test and not some other effect or random chance.


# **Descriptive Statistics**

- Mode
  - Most common value
- Mean

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Standard Deviation

$$\sigma = \sqrt{\sum_{i=1}^{n} \frac{(x - \overline{x})^2}{n}}$$



## Example: Blood Pressure

#### Measurement

 Get into groups of 4 and take each others blood pressure for the next 5-10min

#### Reporting

 In those same groups, calculate the mean, mode and standard deviation of the class

#### Analysis

- Is the data normally distributed?
- Is there a difference between sides of the classroom?
- Does it mean anything?

## **EXAMPLE: ABIOCOR TRIAL**

## Clinical Trial of AbioCor

#### Goals of Initial Clinical Trial

- Determine whether AbioCor<sup>™</sup> can extend life with acceptable quality for patients with less than 30 days to live and no other therapeutic alternative
- To learn what we need to know to deliver the next generation of AbioCor, to treat a broader patient population for longer life and improving quality of life.

## Clinical Trial of AbioCor

- Patient Inclusion Criteria (highlights)
  - Bi-ventricular heart failure
  - Greater than eighteen years old
  - High likelihood of dying within the next thirty days
  - Unresponsive to maximum existing therapies
  - Ineligible for cardiac transplantation
  - Successful AbioFit<sup>™</sup> analysis
- Patient Exclusion Criteria (highlights)
  - Heart failure with significant potential for reversibility
  - Life expectancy >30 days
  - Serious non-cardiac disease
  - Pregnancy
  - Psychiatric illness (including drug or alcohol abuse)
  - Inadequate social support system

## Clinical Trial of AbioCor

## Clinical Trial Endpoints

- All-cause mortality through sixty days
- Quality of Life measurements
- Repeat QOL assessments at 30-day intervals until death

### Number of patients

- Initial authorization for five (5) implants
- Expands to fifteen (15) patients in increments of five (5) if 60-day experience is satisfactory to FDA

## Consent Form

- Link to Consent Form:
  - http://www.sskrplaw.com/gene/quinn/informe dconsent.pdf
- Link to other Documents about lawsuit
  - http://www.sskrplaw.com/gene/quinn/index.h tml

## **EXAMPLE: VITAMIN E**

# The Study

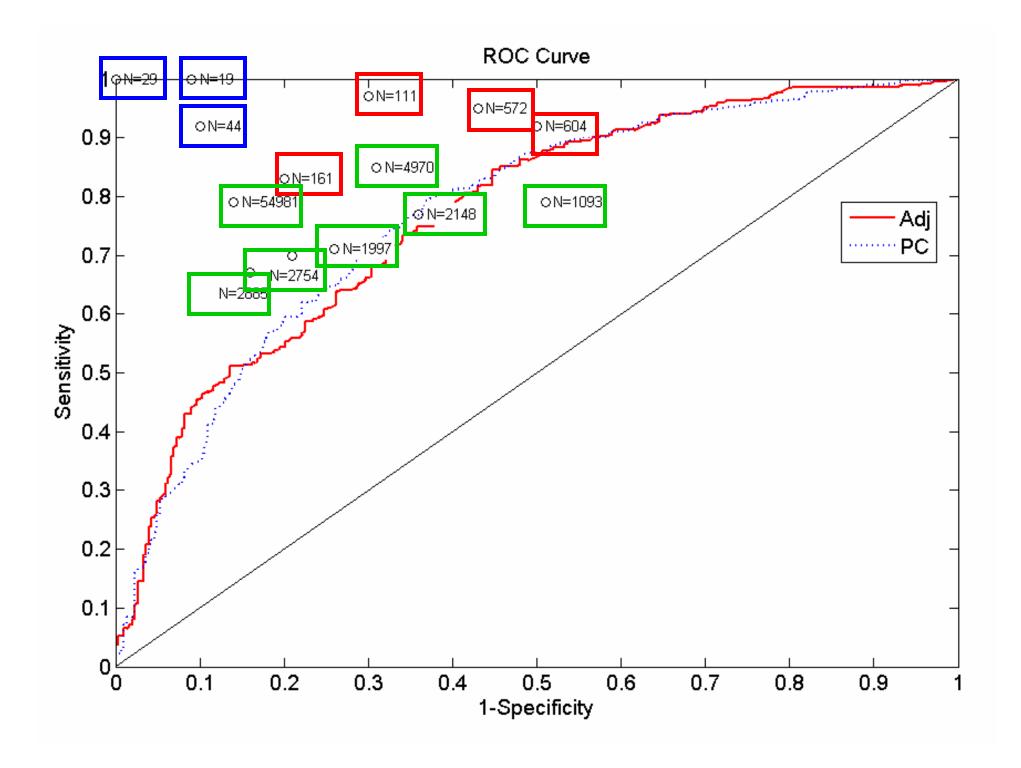
### Pilot Study

- In the early 1990's, small study done which showed taking vitamin E reduced risk of heart disease
- Regularly taking high doses shown to reduce risk by up to 40%

### Media Coverage

These studies received huge amounts of coverage in the media

# Follow-Up


#### **1996**

- Study compared 1,035 patients on vitamin E and 967 on placebo
- Demonstrated a positive effect of the vitamin

#### **2000**

- Very large study (9,541 patients) shows vitamin E has no effect
- Study tracked patients for 7 years and found evidence that vitamin E in large doses might actually be harmful

# PLANNING A CLINICAL TRIAL



# Planning a Clinical Trial

#### ■ Two arms:

- Treatment group
- Control group

#### Outcome:

- Primary outcome
- Secondary outcomes

## Sample size:

- Want to ensure that any differences between treatment and control group are real
- Must consider \$\$ available

## Example – Planning a Clinical Trial

- New drug eluting stent
- Treatment group:
- Control group:
- Primary Outcome:
- Secondary Outcomes:

# Design Constraints

#### Constraints

- Cost, time, logistics
- The more people involved in the study, the more certain we can be of the results, but the more all of these factors will increase

#### Statistics

 Using statistics, we can calculate how many subjects we need in each arm to be certain of the results

## Sample Size Calculation

There will be some statistical uncertainty associated with the measured restenosis rate

#### Goal:

- Uncertainty << Difference in primary outcome between control & treatment group
- Choose our sample size so that this is true

# Types of Errors in Clinical Trial

## Type I Error:

 We mistakenly conclude that there is a difference between the two groups, when in reality there is no difference

### Type II Error:

 We mistakenly conclude that there is not a difference between the two, when in reality there is a difference

#### Choose our sample size:

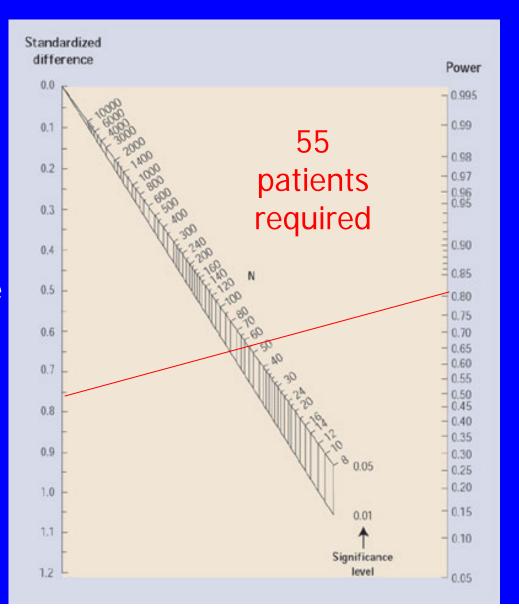
- Acceptable likelihood of Type I or II error
- Enough \$\$ to carry out the trial

## Types of Errors in Clinical Trial

#### Type I Error:

- We mistakenly conclude that there IS a difference between the two groups
- p-value probability of making a Type I error
- Usually set p = 1% 5%

#### Type II Error:


- We mistakenly conclude that there IS NOT a difference between the two
- Beta probability of making a Type II error
- Power
  - = 1 beta
  - = 1 probability of making a Type II error
- Usually set beta = 10 20%

## How do we calculate n?

- Select primary outcome
- Estimate expected rate of primary outcome in:
  - Treatment group
  - Control group
- Set acceptable levels of Type I and II error
  - Choose p-value
  - Choose beta
- Use sample size calculator
  - HW14

## Drug Eluting Stent – Sample Size

- Treatment group:
  - Receive stent
- Control group:
  - Get angioplasty
- Primary Outcome:
  - 1 year restenosis rate
- Expected Outcomes:
  - Stent: 10%
  - Angioplasty: 45%
- Error rates:
  - p = .05
  - Beta = 0.2



## How to Get Involved

- Government Database of Trials
  - <u>www.clinicaltrials.gov</u>

# Assignments Due Next Time

- HW14
- Project 6
- Exam Three:
  - April 11<sup>th</sup>
  - Take Home Exam