Technologies for Treatment of Heart Disease

Lectures 17-19

3.18.08 Louise Organ (and Vishal Gupta) lorgan@rice.edu

From Last Tuesday 3/11

- Cost-effectiveness of new technologies
- · Advantages and disadvantages
 - Balancing effectiveness with costeffectiveness
 - What's a good sell?
 - · What's ethical?
 - Variations between developed and developing countries

Four Questions

- What are the major health problems worldwide?
- Who pays to solve problems in health care?
- How can technology solve health care problems?
- How are health care technologies managed?

Outline: Treatment of Heart Disease

- Burden of cardiovascular disease (CVD)
- · Cardiovascular system
- · Measuring cardiovascular health
- Valve diseases
- · Atherosclerosis and treatments
 - Stroke
 - Heart attack
- · Heart failure and treatments

Muddiest point/Clearest

Burden of Cardiovascular Disease (CVD)

What is Cardiovascular Disease (CVD)

- Generally: all diseases that involve the heart and blood vessels
 - Valve diseases
- Typically: those diseases related to atherosclerosis
 - Cerebrovascular disease
 - Stroke
 - Ischemic heart disease
 - · Coronary artery disease (CAD)

Global Burden of CVD

- In 1999: CVD contributed to a third of global deaths
 - 80% are in low and middle income countries
- By 2010: CVD is estimated to be the leading cause of death in developing countries
 - General improvements in health make CVD a factor in overall mortality rates
- In 2003: 16.7 million deaths due to CVD
 - Cost of care for these conditions is high

Amortality - adults aged 15-59 Rank Cause Deaths (000) 1 HIV/AIDS 2779 1 Is Inshemic heart disease 5835 2 Isbaemic heart disease 1332 2 Cerebrovascular disease 4689 3 Indervaloris 1036 3 Chronic obstructive pulmonary disease 2783 5 Cerebrovascular disease 783 6 Self-Inflicted injuries 672 6 Diabetes Healt disease 783 8 Cirrhosis of the liver 473 7 Violence respiratory infections 752 9 Lower respiratory infections 752 9 Subsections heart disease 735 10 Chronic obstructive pulmonary disease 343 10 Colon and rectum cancers 477

US Burden of CVD

- · CVD:
 - 61 million Americans (≈ 25% of population)
 - Accounts for > 40% of all deaths -- 950,000/year
- · Cost of CVD disease:
 - \$351 billion
 - \$209 billion for health care expenditures
 - \$142 billion for lost productivity from death and disability
- Stroke
- Third leading cause of death in the US
- · Ischemic Heart/CAD
 - Leading cause of death in US
 - Coronary heart disease is a leading cause of premature, permanent disability among working adults

US Burden of CVD: Heart Attack

- Consequences of ischemic heart disease
 - Narrowing of the coronary arteries that supply blood to the heart
- Each year:
 - 1.3 million Americans suffer a heart attack
 - 460,000 (≈ 40%) are fatal
 - Half of those deaths occur within 1 hour of symptom onset, before person reaches hospital
- Onset is often sudden
 - Importance of prevention

Risk Factors of CVD

- · Risk Factors:
 - Tobacco use
 - Low levels of physical activity
 - Inappropriate diet and obesity
 - High blood pressure
 - High cholesterol

For almost all individuals these are modifiable!!!

Early Detection of CVD

- Screening for CVD:
 - Measure blood pressure (BP) annually
 - 12-13 point reduction in blood pressure can reduce heart attacks by 21%
 - Check cholesterol every 5 years
 - 10% drop in cholesterol can reduce heart attacks by 30%
- Patient compliance
 - High BP: not under control in 70% of patients
 - High cholesterol: not under control in 80% of patients

The Cardiovascular System

Cardiovascular System

- · Anatomy and Physiology
 - Vessels
 - Heart
 - Valves
- How to we assess our risk factors?
 - Measure BP and cholesterol levels
- How to we measure the health and functionality of our cardiovascular system?
 - Listen to heart sounds
 - Quantitative parameters for heart function

The Heart as a Pump

- · The right atria fills with blood returning to heart from the vena cava
 - Tricuspid valve separates right ventricle
- Right ventricle pumps blood to lungs to be oxygenated
 - Pulmonary valve separates pulmonary artery
- Left atria fills with oxygen rich blood from pulmonary vein
 - Mitral (bicuspid) valve separates the left ventricle
- · Left ventricle pumps blood to body
 - Aortic value separates the aorta
- Filling is the "resting" state -- diastole
- Pumping/contractior http://www.pbs.org/wgbh/nova/eheart/human.html

Four Heart Valves Valves of the Heart Two types Atria/ventricle · 2 or 3 flaps · Right: tricuspid · Left: mitral/bicuspid Semilunar · Blood leaves the heart · Right: pulmonary

http://www.uabhealth.org/14549/

Measuring CV Health

Measuring CV Health

Heart sounds

- AV

• 3 cusps

· Left: aortic

- Blood Pressure (BP)
- Serum cholesterol levels/lipid panel
- Echocardiogram
- Electrocardiogram

Measuring CV Health: Heart Sounds

- · Heart sounds are produced by valve closure
- Normal heart sound is "lub-dup"
 - Lub: AV valves close
 - Dup: Semilunar valves close
- · Abnormalities can produce heart murmurs
 - Not always though
 - Echocardiography

Measuring CV Health: Blood Pressure

- · Normal blood pressure:
 - Varies from minute to minute
 - Varies with changes in posture
 - Should be < 120/80 mm Hg for an adult
 - The higher/top number + systolic
 - The lower/bottom number =diastolic
- Pre-hypertension:
 - Blood pressure that stays between 120-139/80-89
- Hypertension:
 - Blood pressure above 140/90 mm Hg
- My blood pressure = 108/64

http://www.medicaldiscoverynews.com/shows/bloodpressure

Blood Pressure Activity

- · Groups of 6
 - Even numbers since you'll need a partner
- Measure each person's blood pressure twice
- · Write down the results each time
- Get an average BP for each person
- · Get an average for your entire group
- · We'll make a class average and compare

Measuring CV Health: Serum Cholesterol

- LDL (low-density)
 - "bad" cholesterol
 - Cholesterol builds up inside blood vessels
- · HDL (high-density)
 - "good" cholesterol
 - Removes cholesterol from vessels to liver for

Interpretation of Serum Lipid Levels					
	Total Cholesterol	LDL	HDL	Triglyceride s	
Optimal		Under 100	Above 60		
Desirable		Under 130		Below 150	
Borderlin	200-239	130-159		150-199	
Abnôrma I	Over 240	Over 160	Below 40	Above 200	

http://www.medicaldiscoveryne ws.com/shows/transfats.html

Serum Cholesterol Levels: Case Study

Interpretation of Serum Lipid Levels							
	Total Cholesterol	LDL HDL T		Triglyceride s			
Optimal		Under 100	Above 60				
Desirable		Under 130		Below 150			
Borderlin	200-239	130-159		150-199			
Abnorma	Over 240	Over 160	Below 40	Above 200			

Patier
_

A Total				Patient C	;		
cholestero	LDL	HDL	Triglycerid es	Total cholestero	LDL	HDL	Triglycerid es
Patient Patient	135	44	67	235	136	63	182
B _{Total}				Paţient D)		
cholestero	LDL	HDL	Triglycerid es	cholestero	LDL	HDL	Triglycerid es
197	97	77	116	195	109	66	99

Serum Cholesterol Levels: Case Study Patient Patient Total Total riglycerid LD cholestero 192 Patient Patient D Total Total 197 116 195

Serum Cholesterol levels: Case Study

- · Physiologic measurements vary a lot!
 - Let's see with your BP values
- What's important is to monitor over time
 - Start young
 - Be consistent
 - Take responsibility for your health

Quantifying Heart Performance

- Heart Rate (HR)
 - Number of heartbeats per minute
 - Normal value is 60-90 bpm at rest
- Can drop as low as 20 bpm when sleeping
- Stroke Volume (SV)
 - Amount of blood pumped by ventricle with each heartbeat
 - Normal value is 60-80 mL
- Cardiac output (CO)
 - Total volume of blood pumped by ventricle per minute
 - CO = HR x SV
 - Normal value is 4-8 L/min

Quantifying Heart Performance

- Blood volume
 - Total volume of blood in circulatory system
 - Normal value is ≈ 5 L
 - Total volume of blood is pumped through our heart each minute!!
- Ejection Fraction (EF)
 - Fraction of blood pumped out of ventricle relative to total volume (at end diastole)
 - End diastolic volume (EDV)
 - EF = SV/EDV
 - Normal value > 60%
 - So no one's heart is a "perfect" pump

Advanced Measures of CV Performance: Echocardiogram

- ttp://www.heartsite.com/html/echocardiogram.html#

- Sound waves produce images
 - Ultrasound
- Visualize complex movements within the heart
 - Ventricles squeezing and relaxing
 - Opening and closing of valves in time with heartbeat
- Identify and confirm abnormalities in muscle and valves

Advanced Measures of CV Performance: Electrocardiogram

- Electrical activity (ECG or EKG)
- Records the electric waves generated by heart activity
 - Electric signal measured in mV
 - Different waveform is seen based on location of the electrode
- Normal heartbeat is initiated by a small pulse of current
- Electrical activity starts at the top of the heart, spreads downward and ther
 - Excites the muscles in optimal way for pumping blood
- Pacemaker Cells
- Specialize in producing electrical signal

http://nobelprize.org/educational_games/medicine/ecg/

Valve Diseases

Valve Diseases: Etiology

- · Two main types of valve dysfunction
 - Regurgitation
 - · Improper valve closing allows backwards leakage
 - - · Narrowing of opening does not let enough blood through
- Common causes
 - Congenital birth defect
 - Infective endocarditis
 - Rhuematic fever
 - Myxomatous degeneration

Valve Diseases: Detection and Treatment

- May be detectable through heart sounds
- · Diagnosis with Doppler echocardiogram
 - Doppler assesses blow flow
 - · Direction and velocity
- Treatment is usually surgically repairing or replacing the affected valve(s)
- > 100,000 valve replacements and repairs in the US each year

http://www.youtube.com/watch?v=IBBCu3x

Artificial Heart Valves

- · Surgical Repair or Reconstruction
 - Common for mitral valve dysfunction
 - Use pulmonary in place of aortic
- Mechanical
 - Last for 10-12 years
 - Require anticoagulation therapy
- · Bioprosthetic
 - Glutaraldehyde fixed pericardium and valves
 - Calcification
 - Some can last for up to 20 years
- · Xenografts
 - Porcine valves; good mimic
- Immunogenic
- Allografts
 - Good for children
 - Scarce supply

Bioprosthetic Valve

Tissue Engineered Heart Valves

- Primarily targeted for use in pediatric patients
 - No other option works well here
- Need of successful tissueengineered living valve, which can grow with patients and last for lifetime
- Regeneration
 - Implanted matrix remodels in vivo
- Repopulation
 - Implant acellular porcine valve which fills in with patient cells

Tissue-engineered heart valve Hoerstrup et al., Circulation 2002

Valve Diseases: Final Thoughts

- · Early concerns have been addressed
 - Replacement valve longevity
 - Surgical mortality
- Repeated use of bioprosthetic valves is common
 - Risk of second surgery is ≈ risk of thromboembolism associated with mechanical valves
- Edwards pericardial valve may last 20 years
 - Equivalent to an allograft

http://circres.ahaiournals.org/cgi/content/full/97/8/7

Valve Diseases: Final Thoughts

- · The status quo seems to be acceptable
- Does this affect the field of engineering new replacement valve products?
 - A number of new innovations have failed in clinical trials
 - Physicians don't want to try new things
 - Should we spend money and resources on tissue engineering valves?
 - Still no effective therapy for children
 - · Only 10% of adult market
 - First clinical tissue engineered product tested failed http://circres.ahajournals.org/cgi/content/full/97/8/7-

Outline: Treatment of Heart Disease

- Burden of cardiovascular disease (CVD)
- Cardiovascular system
- Measuring cardiovascular health
- Valve diseases
- Atherosclerosis and treatments
 - Stroke
 - Heart attack
- · Heart failure and treatments

For Thursday...

- No homework is due next class
- Muddiest point & clearest point
- And thanks again to Vishal for material and expertise on heart valves!