BIOE 301

Lecture Thirteen

David J. Javier
djj3872@rice.edu
Office Hours: Mon 1-4 PM

Amniocentesis Example

- Amniocentesis:
 - Procedure to detect abnormal fetal chromosomes
- Efficacy:
 - 1,000 40-year-old women given the test
 - 28 children born with chromosomal abnormalities
 - 32 amniocentesis test were positive, and of those 25 were truly positive
- Calculate:
 - Se, Sp, PPV, NPV

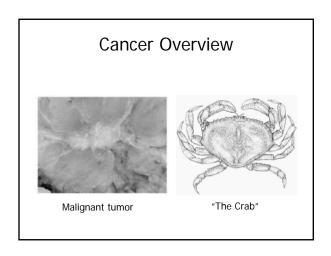
Possible Test Results

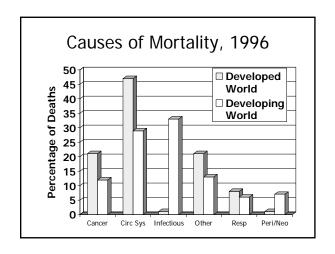
	Test Positive	Test Negative	
Disease Present	25	3	# with Disease = 28
Disease Absent	7	965	#without Disease = 972
	# Test Pos = 32	# Test Neg = 968	Total Tested = 1,000

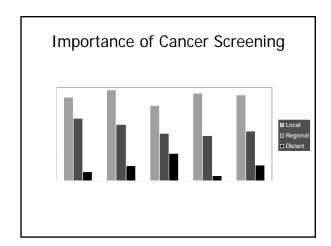
Se = 25/28 = 89% Sp = 965/972 = 99.3% PPV = 25/32 = 78% NPV = 965/968 = 99.7%

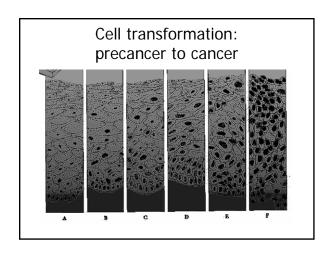
Dependence on Prevalence

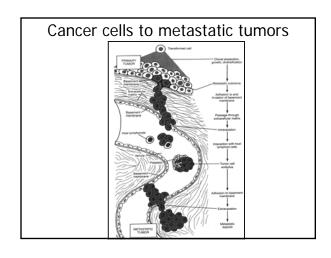
- Prevalence is a disease common or rare?
 - p = (# with disease)/total #
- Does our test accuracy depend on p?
 - Se/Sp do not depend on prevalence
 - PPV/NPV are highly dependent on prevalence

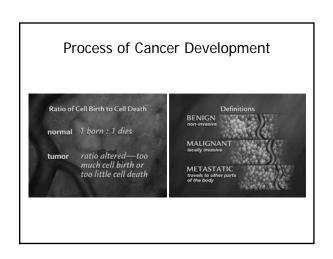

Is it Hard to Screen for Rare Disease?

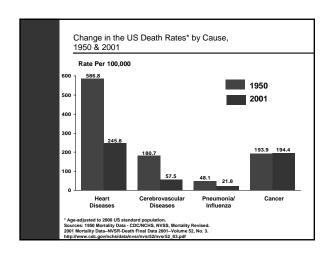

- Amniocentesis:
 - Usually offered to women > 35 yrs
- Efficacy:
 - 1,000 20-year-old women given the test
 - Prevalence of chromosomal abnormalities is expected to be 2.8/1000
- Calculate:
 - Se, Sp, PPV, NPV

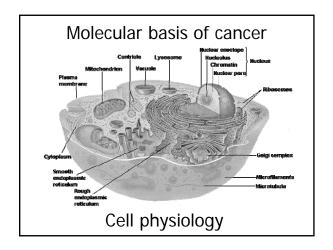

Possible Test Results

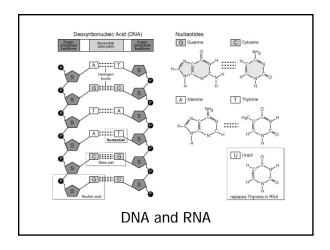

	Test Positive	Test Negative	
Disease Present	2.5	.3	# with Disease = 2.8
Disease Absent	6.98	990.2	#without Disease = 997.2
	# Test Pos = 9.48	# Test Neg = 990.5	Total Tested = 1,000

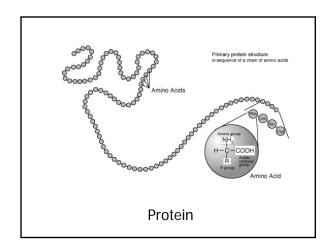

Se = 2.5/2.8 = 89.3% Sp 990.2/997.2= 99.3% PPV = 2.5/9.48 = 26.3% NPV =990.2/990.5 = 99.97%

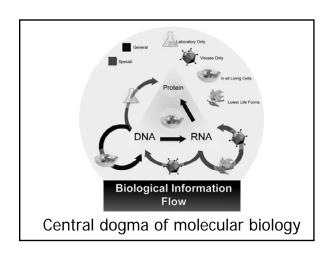


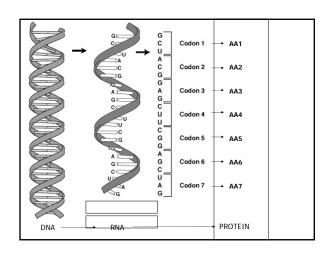


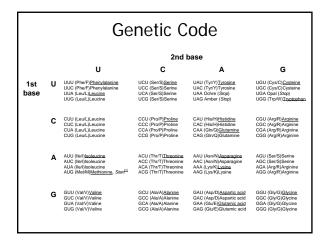


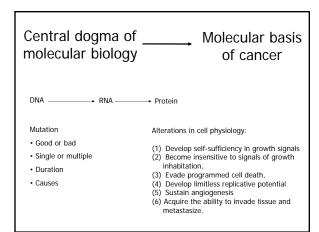


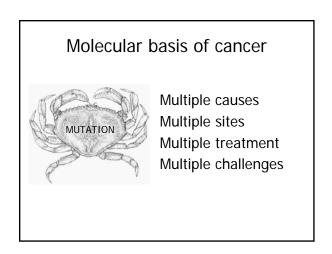



- Francis Crick, Nobel Prize in Medicine 1962
- " The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred back from protein to either protein or nucleic acid."


DNA RNA Protein


Central dogma of molecular biology





Bioengineering and Cancer

Risk factors
Detection
Treatment
Challenges
New technologies

Case Studies

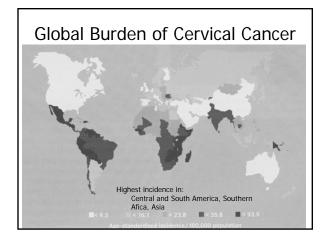
- Cervical Cancer
- Prostate Cancer
- Ovarian and Lung Cancer
- American Cancer Society (cancer.org)
- National Cancer Institute (cancer.gov)

Dr. Koop

Bioengineering and Cervical Cancer

Statistics on cervical cancer

US data (2007)

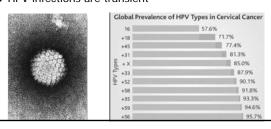

Incidence: 11,150Mortality: 3,670

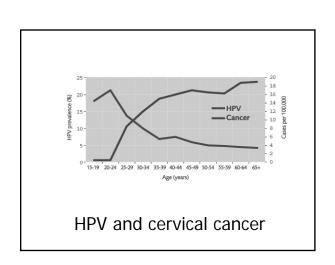
World data (2004)

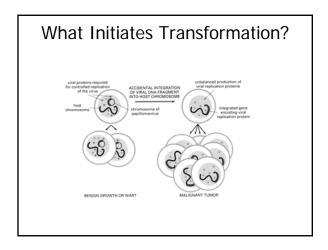
■ Incidence: 510,000 (80% developing world)

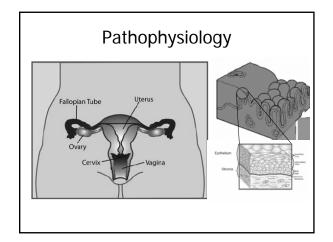
Mortality

■ 288,000 deaths per year worldwide

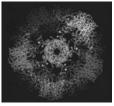


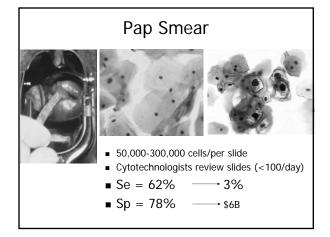

Risk factors

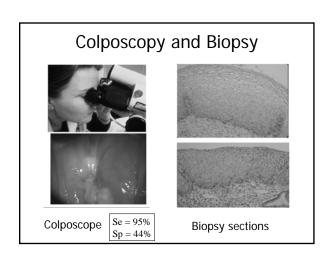

- HPV infection
 - HPV infection is the central causative factor in squamous cell carcinoma of the cervix
- Sexual behaviors
 - Sex at an early age
 - Multiple sexual partners
- Cigarette smoking

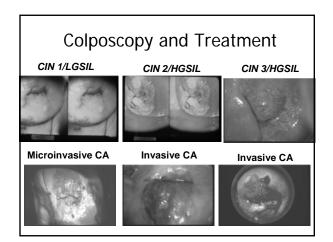

Human papilloma virus (HPV)

- Most common STD
- >70 subtypes
- Asymptomatic infections in 5-40% of women of reproductive age
- HPV infections are transient



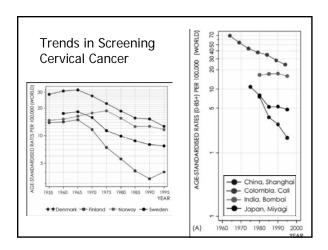



HPV vaccine



- Virus-like particles (VLP) made from the L1 protein of HPV 16
- approved for use in girls and women aged 9 to 26 years in the US
- not effective to women already exposed to HPV
- Effective on 4 HPV isotypes
- Recombinant technology
- Alternative prevention technique to screening?

How Do We Detect Early Cervical Cancer?

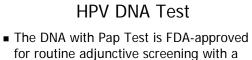


Detection and Treatment

- Screening:
 - Pap smear
- Diagnosis:
 - Colposcopy + biopsy
- Treatment:
 - Surgery, radiotherapy, chemotherapy
- 5 year survival
 - Localized disease: 92% (56% diagnosed at this stage)

Screening Guidelines, ACS

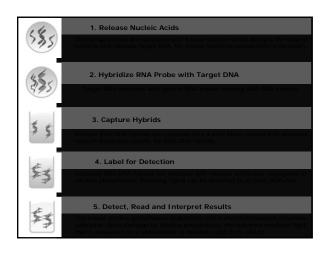
- All women should begin cervical cancer screening about 3 years after they begin having vaginal intercourse, but no later than when they are 21 years old. Screening should be done every year with the regular Pap test or every 2 years using the newer liquid-based Pap test.
- Beginning at age 30, women who have had 3 normal Pap test results in a row may get screened every 2 to 3 years with either the conventional (regular) or liquidbased Pap test.
- Option for women over 30 is to get screened every 3 years with either the conventional or liquid-based Pap test, plus the HPV DNA test.

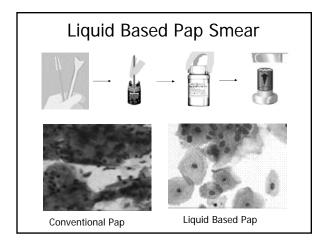

Challenge

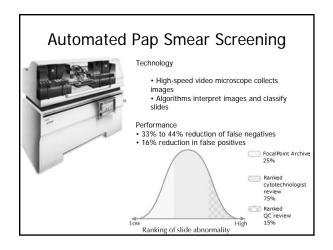
- Developed and developing world
- Cost and infrastructure requirements for screening
- Need for appropriate technologies

New Detection Technologies

Aims:


- Reduce the false positive and false negative rates
- Give instantaneous results
- Reduce the costs




Pap test for women age 30 and older.

Se= 80-90% Sp= 57-89%

Optical technologies

Visual Inspection with acetic acid (VIA)

Digital Image Analysis (DIA)

Costs

Pap Test	\$10-20
Liquid-based Pap	\$50
Automated Pap Smear Screening	\$20-60
HPV DNA test	\$90
HPV vaccine	\$360

Next Time

- Exam 2: March 13th
- HW5 due today