BIOE 301

Lecture Seven

Plagiarism: Why Talk About It?

- Serious crime which can end your career
- DHHS Office of Research Integrity
 - Plagiarism is involved in over 50% of the complaints received for investigation of scientific misconduct.

Plagiarism: What is it?

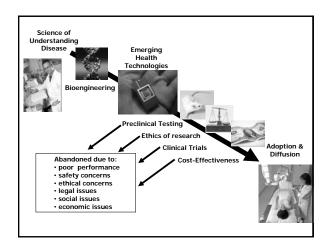
- 1. Direct, verbatim lifting of passages
- 2. Rewording ideas from the original in the purported author's own style
- Paraphrasing the original work without attribution
- Noting the original source of only some of what is borrowed

American Medical Association Manual of Style

Plagiarism: How to prevent

- Use quotation marks when more than 6 words are lifted verbatim from another source
- Cite the original source when paraphrasing material
- Credit the original source for all the information borrowed.
- Unpublished material is the exclusive property of the original author.
- Written permission is required for the use of all cartoons, drawings, figures etc.

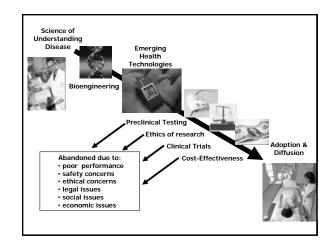
Four Ouestions


- What are the problems in healthcare today?
- Who pays to solve problems in healthcare?
- How can we use science and technology to solve healthcare problems?
- Once developed, how do new healthcare technologies move from the lab to the bedside?

Three Case Studies

- Prevention of infectious disease
 - HIV/AIDS
- Early detection of cancer
 - Cervical Cancer
 - Ovarian Cancer
 - Prostate Cancer
- Treatment of heart disease
 - Atherosclerosis and heart attack
 - Heart failure

Today:


The process of developing a new medical technology

Class Activity #1 - Gene Therapy

Directions:

- Place the articles in correct chronological order
 - Contextual clues in the selections
 - Your knowledge of the science of DNA and genes
 - Your recollection of events in the media.
- Articles reflect current thought for the time
- First article published in 1953; the last in 2003
- Discuss in group; come to consensus
- Choose one member of your group to speak
 - Did your ideas about the sequence match each other?
 - What clues or events prompted you to make choice?
- Do not discuss your ideas with other groups

Ouestion:

What is the difference between science and engineering?

Definitions

- Science
 - Body of knowledge about natural phenomena which is:
 - Well founded
 - Testable
 - Purpose is to discover, create, confirm, disprove, reorganize, and disseminate statements that accurately describe some portion of physical, chemical, biological world
- "Science is the human activity of seeking natural explanations for what we observe in the world around us."

Definitions

- Engineering
 - Systematic design, production and operation of technical systems to meet practical human needs under specified constraints
 - Time
 - **\$**\$
 - Performance
 - Reliability
- "Engineering. . . in a broad sense. . . is applying science in an economic manner to the needs of mankind "

Definitions

- What is the difference between science and engineering?
 - Science
 - Inquiry to better understand world around us
 - No practical goal necessary
 - Engineering
 - Use of science to solve real world problem in practical way

Engineering Design Method

- Fashioning a product made for a practical goal in the presence of constraints
- Six design steps:

SPECS

■ 1. Identify a need

- 2. Define the problem (goals, constraints)
- 3. Gather information
- 4. Develop solutions
- 5. Evaluate solutions ==

Refine Design

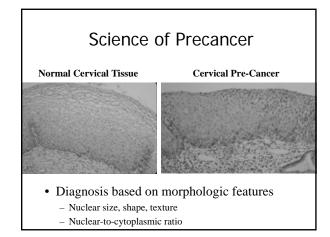
- 6. Communicate results
 - Papers, patents, marketing

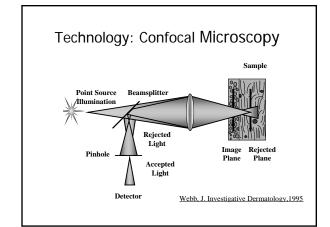
Journal Article

Advances in Brief

Real-Time Vital Optical Imaging of Precancer Using Anti-Epidermal Growth Factor Receptor Antibodies Conjugated to Gold Nanoparticles

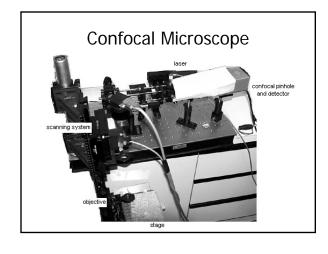
nstantin Sokolov, Michele Follen, Jesse Aaron, Ina Pavlova, Anais Malpica, Reuben Lotan, and lecca Richards-Kortum²

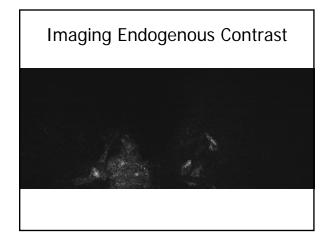

Patent

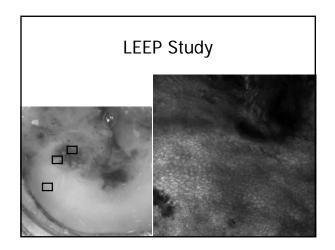

- www.uspto.gov
- Diagnostic Imaging Patent

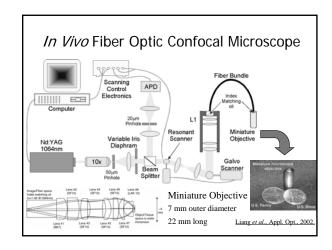
Class Activity #2

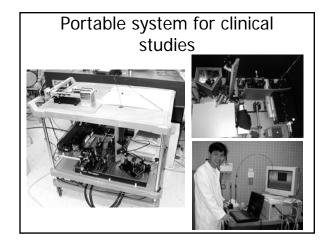
Example: Cervical cancer detection

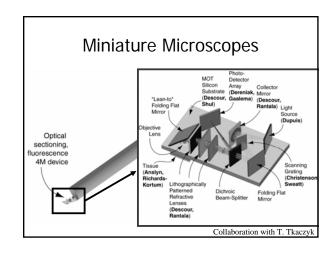

- Science of precancer
- Engineering solutions for precancer detection
 - 1. Identify a need
 - 2. Define the problem (goals, constraints)
 - 3. Gather information
 - 4. Develop solutions
 - 5. Evaluate solutions
 - 6. Communicate results

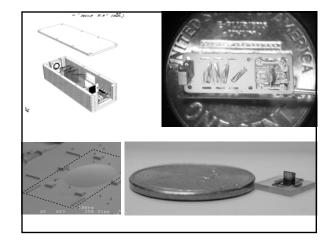





Example: Cervical cancer detection


- Science of precancer
- Engineering solutions for precancer detection
 - 1. Identify a need
 - 2. Define the problem (goals, constraints)
 - 3. Gather information
 - 4. Develop solutions
 - 5. Evaluate solutions
 - 6. Communicate results





Example: Cervical cancer detection

- Science of precancer
- Engineering solutions for precancer detection
 - 1. Identify a need
 - 2. Define the problem (goals, constraints)
 - 3. Gather information
 - 4. Develop solutions
 - 5. Evaluate solutions
 - 6. Communicate results

Summary of Lecture 7

- Science
 - "Science is the human activity of seeking natural explanations for what we observe in the world around us."
- Engineering
 - Systematic design, production and operation of technical systems to meet practical human needs under specified constraints
 - Six steps of the engineering design method

Assignments Due Next Time

■ Project Task 2