
Oscillations 

 

"Physics is experience, arranged in economical order." 

 E. Mach 

 

OBJECTIVES 

 To study some simple oscillatory systems. 

 

THEORY 

 Typical dictionary definitions of the verb "oscillate" are "to move or travel back and forth 

between two points" and "to vary above and below a mean value". Physics uses the word in 

essentially the same way, and recognizes a wide range of mechanical and electrical systems that 

oscillate. One of the simplest possibilities is a mass connected to a spring in such a way that the 

mass can move back and forth if pushed away from an equilibrium position. This system 

contains the two essential elements of an oscillator: Something to move back and forth, and some 

mechanism to provide a restoring force. Another mechanical example would be a solid bar, 

clamped at one end. It will vibrate if struck, but here the moving mass and the spring are the 

same material. A capacitor and an inductor provide an electrical realization of exactly the same 

equation as the mass and spring.  

 In this exercise we will study the motion of a mass suspended from a springy material, as 

shown schematically in Fig. 1. We assume that the mass can only move vertically, and take the 

origin at the point where the spring is not stretched at all. The equation of motion, including both 

the gravitational and spring forces, is 
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Fig. 1 Idealized mass and spring oscillator. 
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When the mass is not moving it will be at an equilibrium position xe given by the solution of 

 

 F(xe) = mg  (2) 

 

If the mass moving we expect it to oscillate around the equilibrium position, and if we knew the 

form of F(x) we might be able to solve Eq. 1 to find a description of the motion. 

 Physics textbooks usually consider the case of a "simple harmonic oscillator". The simple 

harmonic oscillator is constructed with an ideal massless spring, for which the force is a linear 

function of the stretch 

 

 F(x) = kx  (3) 

 

The constant of proportionality k is called the spring constant. This assumption is made mostly 

because it is fairly easy to solve Eq. 1 for this force, although it is also possible to manufacture 

springs which are approximately linear. The equation of motion is then 
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The solution for the stretch as a function of time is 

 

 x = Asin(!t +") + xe  (5) 

 

where A and ! are constants determined by the initial conditions, xe is the equilibrium position, 

and " is the angular frequency of oscillation, given by 

 

 ! = k /m  (6) 

 

A derivation of the result is in your text, or you can show that it is correct by substituting x from 

Eq. 5 into Eq. 4. 

 When F(x) is not so simple it may or may not be possible to write down a general 

analytic solution to Eq. 1. We can still make progress by considering small-amplitude 
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oscillations, for which x remains close to xe. Expanding F(x) in a Taylor series around xe gives 

the expression 

 

 F(x) = F(xe) + ke(x ! xe)  (7) 

 

where we have neglected all terms of the infinite series beyond the first two. The constant ke is 

given by 

 

 ke =
dF(x)

dx xe

 (8) 

 

Substituting this approximation for F(x) into Eq. 1, and simplifying with relation 2, we get the 

approximate equation of motion 
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Since we kept only the linear variation of the force, the equation of motion has exactly the same 

form as for simple harmonic motion, and will have the same solution. We therefore expect that 

small oscillations about the equilibrium position will occur with frequency  

 

 ! = ke / m  (10) 

 

when the effective spring constant ke is found from the slope of the F(x) curve at xe according to 

Eq. 8. 

 One final complication is that the system may have friction of some sort. This could be 

due to air resistance or to some internal process in the spring material. Whatever the cause, the 

conversion of mechanical energy to some other form will cause the oscillations to gradually 

decrease in amplitude. For many circumstances, the decrease is exponential, leading to a solution 

of the form 

 

 x = Ae
!"t
sin(#t + $) + xe  (11) 

 

where ! is a constant determined by the nature of the energy loss. There will also be a decrease in 

the oscillation frequency, but it is usually small if the damping is weak enough that oscillation 

persists for at least several cycles. 
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EXPERIMENTAL PROCEDURE 

1. Data acquisition and analysis 

 The overall experimental setup is shown in Fig. 2. A small bucket to hold various weights 

hangs from a spring. The spring, in turn, is held by a force probe on a support arm which is 

clamped to a lab table. Stretch is measured by a sonic ranger which sits on the floor directly 

under the weight bucket, pointing up. A box with a wire mesh window protects the ranger from 

falling weights. 

 Data acquisition is accomplished with LoggerPro software. Start the program by double-

clicking an icon labeled Oscillators.cmbl, or load the file after the program is running. This will 

give you a good starting point for this exercise.  

 To test the process, you can suspend the bucket, loaded with a few hundred grams, from 

the helical metal spring. If you displace the bucket vertically and then start data acquisition you 

should get a plot of stretch vs time showing decreasing oscillations, and a plot of force vs 

position. The plots may become irregular if the sonic ranger is confused by other obstacles, if it 

is not under the bucket, or if the bucket swings sideways too much.  

 Before taking data, calibrate the force probe on the 10N range. It is also convenient to set 

the zero of the position plot at the equilibrium position for the mass and spring. Go to Experiment 

> Zero... or click on the zero icon on the tool bar, unselect the force probe, and click OK. The 

sonic ranger will run very briefly, and the menu will close. The distance plotted is now relative 

to the equilibrium position of the bucket. 

 Once you have a clear and properly-zeroed display of the oscillation, you can do a 

quantitative comparison with Eq. 11. Using the Damped sine function  

spring
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Fig. 2 Physical arrangement for oscillation measurements. 



 PHYS 111 Oscillations 5 

 

 A*exp(-B*t)*sin(C*t+D)+E (12) 

 

in the automatic curve fit, click Try Fit as usual to let the program optimize the parameters shown. 

If the results are unreasonable, edit the parameters to give a more reasonable starting point, click 

Automatic, and Try Fit again. When the fit is satisfactory, record the oscillation frequency for later 

analysis. 

 You will also want to measure the slope of the force vs position curve to get an effective 

spring constant to compare with your oscillation frequencies. To do this, simply determine the 

slope of the force-position graph for each equilibrium position you use. 

 

2. Measurement program 

 Two springs, with different characteristics, are available. One is a wire helix, for which 

the force is supposed to be approximately linear. The other is a large rubber band. You should 

determine the oscillation frequencies and effective spring constants of each spring for several 

weights, corresponding to a range of xe. You can then compare the prediction of Eq. 10 that  

 

 k
e
= m! 2  (13) 

 

with the values of ke that you measure directly from the force vs position curve. If you choose to 

use rather small masses the agreement might be improved by accounting for the mass of the 

spring, a portion of which is in motion. The usual claim is that you add 1/3 of the mass of the 

spring to the overall mass in Eq. 13.  

 For the metal spring the maximum stretched length to avoid damage is about 80 cm, 

while the rubber band will only stretch about 75 cm before breaking. Without exceeding those 

limits, determine the oscillation frequency and effective spring constant for several different 

masses for both types of spring.  

 Your data will probably show that ke is nearly constant for the metal helix, but varies 

significantly with xe for the rubber band. Obtain a force vs position curve for the full range of 

positions from unstretched to maximum stretch for each spring, and use the curves to explain the 

different behaviors of ke.  

 For the rubber band you will probably also note that the force vs position curve is 

different for extension and contraction, a phenomenon called hysteresis. Since the mechanical 

work done is different for the two directions of motion, mechanical energy will be converted to 

heat over an oscillation cycle, accounting for the strong damping you observed. The metal helix 

has little or no hysteresis and correspondingly small damping. 


