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a b s t r a c t

The random coefficients multinomial choice logit model, also known as the mixed logit, has been
widely used in empirical choice analysis for the last thirty years. We prove that the distribution of
randomcoefficients in themultinomial logitmodel is nonparametrically identified. Our approach requires
variation in product characteristics only locally and does not rely on the special regressors with large
supports used in related papers. One of our two identification arguments is constructive. Both approaches
may be applied to other choice models with random coefficients.
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1. Introduction

One of the most commonly usedmodels in applied choice anal-
ysis is the random coefficients logit model, also known as the
mixed logit, which describes choice between one of a finite num-
ber of competing alternatives. Domencich and McFadden (1975),
Heckman and Willis (1977) and Hausman and Wise (1978) intro-
duced flexible specifications for discrete choice models, while the
random coefficients logit model was proposed by Boyd and Mell-
man (1980) and Cardell and Dunbar (1980). Currently, the random
coefficients logit model is widely used to model consumer choice
in environmental economics, industrial organization, marketing,
public economics, transportation economics and other fields.

In the random coefficients logit, each consumer can choose
between j = 1, . . . , J mutually exclusive inside goods and one
outside good (good 0). The exogenous variables for choice j are
in the K × 1 vector xj = (xj,1, . . . , xj,K )′. In the example of
demand estimation, xj might include the product characteristics,
the price of good j and the interactions of product characteristics
with the demographics of agent i. A source of variation in product
characteristics is the differences in characteristics across markets,
which could be indexed by t . So potentially xj can depend on
consumers i and markets t , but we suppress these subscripts
for transparency. In this paper, for some results we assume that
the support of xj includes the 0 vector, which can occur by
centering each element of xj around constants common across the
inside goods. For example, for each k we may redefine x̃j,k =

∗ Correspondence to: University of Michigan, 48109-1220 Ann Arbor, MI, United
States. Tel.: +1 734 330 2854; fax: +1 734 274 2331.

E-mail address: jtfox@umich.edu (J.T. Fox).

0304-4076/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2011.09.002
xj,k − E[xj,k], where the mean is taken over the inside goods and
across markets or consumers when the exogenous variables vary
across markets or consumers. This location normalization for the
covariates is notwithout loss of generality in amodel, like the logit,
where the additive error is treated parametrically. However, one
normalization is just as arbitrary as any other. Let x = (x′

1, . . . , x
′

J)
denote the stacked vector of all the xj.

Each consumer ihas a preferenceparameterβi, which is a vector
of K marginal utilities that gives i’s preferences over the K product
characteristics. There is also a homogeneous term for each choice
j, denoted as αj. Each αj could be an intercept common to product
j or a term that captures product characteristics without random
coefficients (homogeneous coefficients), as in αj = α+w′

jγw . Here
α is a common intercept for the inside goods contributing to the
utility of purchasing an inside good instead of the outside good,
γw is a vector of parameters on the characteristics in the vector wj,
andw = (w′

1, . . . , w
′

J) denotes the stacked vector of other product
characteristics. Let αJ be the vector of the J αj’s. Agent i’s utility for
choice j is equal to

ui,j = αj + x′

jβi + ϵi,j. (1)

The outside good has a utility of ui,0 = 0 + ϵi,0, as a location nor-
malization for the utilities. The type I extreme value distribution
gives the scale normalization for utility values.

The logit model is defined when the errors ϵi,j are i.i.d.
across choices and each error has the type I extreme value
distribution, which has a cumulative distribution function of
exp


− exp


−ϵi,j


. The random coefficients logit arises when βi

varies across the population, with unknown distribution F (βi).
The unknown objects of estimation are the distribution F (βi) and
the homogeneous coefficients (α, γ ′

w) or αJ . Under the standard
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assumption that βi is independent of xj (we discuss endogeneity
below), utility maximization leads to a choice probability for the
good j,

Pr

j | x; F , αJ

≡

∫ exp

αj + x′

jβi


1 +

J∑
j′=1

exp

αj′ + x′

j′βi

dF (βi) . (2)

This specification is popular with empirical researchers because
the resulting choice probabilities are relatively flexible. In terms
of modeling own- and cross-price elasticities, the random coeffi-
cients logit model allows products with similar x’s to be closer sub-
stitutes, which the logit model without random coefficients does
not allow.

In this paper, we prove that the distribution F(β) is nonpara-
metrically identified, in the sense that the true


F 0, αJ,0


is the

only pair

F , αJ


that solves Pr (j | x, w) ≡ Pr


j | x; F , αJ


in (2)

for all j and all (x, w), where Pr (j | x, w) denotes the popula-
tion choice probabilities. We first recover the homogeneous terms,
αJ (or the fixed parameters α and γw) in (2). We then provide
two identification arguments for the distribution of random co-
efficients, one of which is constructive and the other of which is
non-constructive. The non-constructive identification theorem
leverages results from Hornik (1991) on function approximation
and Stinchcombe and White (1998) on consistent specification
testing. The theorem requires variation in x in only an open set.

Our other identification argument is constructive. We demon-
strate how to iteratively find all moments of β , which is sufficient
to identify the distribution F 0 within the class of distributions that
are uniquely determined by all of their moments. This class is the
set of probability distribution functions that satisfy the Carleman
condition, which we review below.

Both the constructive and non-constructive proof strategies
are not unique to the logit: they could be applied to identify
the distribution of heterogeneity in many differentiable economic
models where covariates enter as linear indices. We outline the
main theorems using generic notation and verify their conditions
for the multinomial logit model.

While one of our identification approaches is constructive, we
do not recommend that empirical researchers adopt an analog es-
timator to our identification argument. Instead, we suggest empir-
ical users adopt one of several nonparametric mixtures estimators
available in the literature. Before this paper, no one had formally
proved that these mixtures estimators consistently estimated the
true F 0 in the random coefficients logit. This lack of a complete
consistency proof arises because showing that the density F 0 is
nonparametrically identified is a necessary component for any
consistency proof for a nonparametric estimator of F 0. We intro-
duce a computationally simple, nonparametric sieve estimator for
F 0 in Fox et al. (forthcoming) and Fox and Kim (2011) for general
mixtures models. We prove that our estimator is consistent in the
Lévy–Prokhorov metric on distributions under the maintained as-
sumption that the model is identified. This identification theorem
therefore completes our proof of consistency for the estimator of
the random coefficients logit, based on Corollary 1 in Fox and Kim.
Alternative nonparametric estimators used for the random coeffi-
cients logit include the Bayesian MCMC estimators in Rossi et al.
(2005) as well as Burda et al. (2008) and the EM algorithm used in
Train (2008). These works do not discuss consistency or identifica-
tion. However, the identification theorem here would be a build-
ing block to proving the consistency of the estimators of


F , αJ


in

these other procedures.
The proof of identification is comforting to empirical re-

searchers. Prior to our theorem, it was not known whether varia-
tion in xwas sufficient to identify the pair


F 0, αJ,0


. One possibility

was that the normality assumptions typically imposed on F 0 were
crucial to identification. We show that indeed the random coeffi-
cients logit model is identified, which provides amore solid econo-
metric foundation for its application in applied microeconomics.

The paper is organized as follows: Section 2 discusses the
related literature, Section 3 introduces notation for a generic
mixtures model, Section 4 states the general non-constructive
identification result, Section 5 states the general constructive
identification result, Section 6 shows how the results apply to
the random coefficients logit, Section 7 explores extensions, and
Section 8 concludes.

2. Related literature

There is a growing literature on the identification of binary and
multinomial choice models with unobserved heterogeneity. These
papers differ in the set of assumptions made in order to obtain
identification results and also differ in the objects of interest in
identification.

Ichimura and Thompson (1998) study the case of binary choice:
one inside good (J = 1) and one outside good. This restriction
makes their method inapplicable for most empirical applications
of demand analysis, which study markets with two or more
inside goods. Ichimura and Thompson identify the cumulative
distribution function (CDF) of, in our notation,


β, ϵi,1 − ϵi,0


. They

use a theorem due to Cramér and Wold (1936) and do not exploit
the structure of the extreme value assumptions on the ϵi,1 and ϵi,0.
Consequently, they need stronger assumptions: (1) amonotonicity
assumption (sign restriction) on one of the K components of
β (βi,k > 0∀ i) and (2) a full support assumption for all K elements
of x1. Similar assumptionswill appear inmany of the papers below.
Gautier and Kitamura (2009) provide a computationally simple
estimator and some alternative identification arguments for the
same binary choice model as Ichimura and Thompson. To our
knowledge, no one has generalized Ichimura and Thompson to the
case of multinomial choice.

We will refer to a regressor whose (random) coefficient has a
sign restriction and that has full support as a ‘‘special regressor’’.
The sign restriction for a special regressor may not be too
restrictive because it is testable and the sign can be determined
from a pre-model analysis as described in Lewbel (2000) and his
other related work. Magnac and Maurin (2007) and Kahn and
Tamer (2010), however, argue that identification using the large
support condition and a conditional mean restriction, as in Lewbel
(2000), critically relies on the tail behavior of the distribution of the
special regressor, as is also the case in ‘‘identification at infinity’’ in
selection models (Andrews and Schafgans, 1998).

Lewbel (2000) provides an identification argument that relies
on a large-support special regressor, but which allows for discrete
elements of xj, relaxes the independence between x and ϵ, and does
not rely on distributional assumptions of the error term. Lewbel’s
approach identifies the means of the random coefficients and the
conditional distribution of the composite error x′

j (βi − E [βi | x])+
ϵi,j. However, identifying the distribution of the composite error
does not identify the joint distribution of the random coefficients,
which is the key object of interest in our paper.

Briesch et al. (2010) study the identification of a discrete choice
model where the payoff to choice j is V


j, zj, si, ωi


− rj + ϵi,j,

where V is an unknown, nonparametric function common to all
consumers, zj are observed product characteristics, si are observed
consumer characteristics, rj is a large support special regressor
with a sign restriction as in Ichimura and Thompson, ϵi,j is an
additive error and ωi is a scalar unobservable that enters the
utility functions for all J choices. There are a variety of other
restrictions. Their model does not nest the random coefficients
logit. Matzkin (2007, page 101) extends these results to the utility
function for choice j of rj +

∑K
k=1 mk


zj,k, ωi,j,k


+ ϵi,j, where



206 J.T. Fox et al. / Journal of Econometrics 166 (2012) 204–212
each function mk (·, ·) is treated nonparametrically, each choice
j has its own random coefficients ωi,j =


ωi,j,1, . . . , ωi,j,K


, the

random coefficients are independent across choices, and rj is a
special regressor. The special regressor and the independence of
random coefficients across choicesmean that the standard random
coefficients logitmodel is not nested in the formulation ofMatzkin.

Subsequent to the circulation of our constructive identification
theorem, Berry and Haile (2010) and Fox and Gandhi (2010) in-
troduced identification arguments for multinomial choice models
without the type I extreme value distribution or additive errors.
Both Berry and Haile and Fox and Gandhi need a monotonicity as-
sumption on one of the K components of β (βi,k > 0 ∀ i) and
(for point instead of set identification) a full support assumption
on the corresponding k-th component xj,k, for all choices j ∈ J .
Berry and Haile identify the conditional-on-x distribution of util-
ity values G


ui,0, ui,1, . . . , ui,J | x


and not F(β). Knowledge of the

full structural model, in the logit case F(β), is necessary for wel-
fare analysis, for example to construct the distribution of welfare
gains between choice situations x1 and x2, or some aggregation of
welfare gains over individuals H


∆iu | x1, x2


, where

∆iu = max
j∈J∪{0}

ui,j

x1

− max

j∈J∪{0}
ui,j

x2

,

where ui,j

xl


is just the realized utility value (1) for xl =
xl′1, . . . , x

l′
J


. Fox and Gandhi do identify the full structural model,

in that they identify a distribution D over J utility functions (not
utility values) of x, as in D


ui,1(x), . . . , ui,J(x)


, where ui,j(x) is

a complete function that describes utility values for choice j at
all x. Again, like all results other than ours, Fox and Gandhi rely
on monotonicity and large support assumptions for a special
regressor.

Compared to this other literature, our main distinguishing
feature is that we exploit the logit distributional assumptions
on the ϵi,j. This corresponds to empirical practice: the random
coefficients logit is a popular specification in applied work.
McFadden and Train (2000, Theorem 1) present an approximation
theorem using the random coefficients logit as the approximating
class, although the theorem requires great flexibility in the
choice of the product characteristics xj in the random coefficients
estimation as a function of some smaller set of underlying
true product characteristics. McFadden and Train do not study
identification.

Our results contribute to the literature on the identification
of discrete choice models by demonstrating that large support
and monotonicity restrictions are not required for identification
if the logit error structure is used, as is common in empirical
work. In our opinion, the main concern with the special regressor
assumption is the requirement for large support. Large supports
are sometimes but not often found in typical datasets used in
demand estimation. Price may be a special regressor; certainly
the assumption of monotonicity on price is rarely controversial.
In an output market, prices are some markup over cost, and
cost rarely moves more than a factor of, say, five (think oil
price fluctuations). As we show, the parametric assumption on
the distribution of the choice-specific errors does away with the
need for large support assumptions. The entire distribution of
random coefficients can be identified using only local variation
in characteristics. In subsequent and at present in-progress work,
Chiappori and Komunjer (2009) present preliminary results for
achieving a weakening of conditions on special regressors without
parametric assumptions in the multinomial choice model.

Our two identification approaches may be applied to choice
models with random coefficients other than the logit, as we
describe below. Our paper, like many of the papers in the liter-
ature, focuses on continuous covariates in x. Lewbel (2000) al-
lows for discrete covariates other than in the special regressor
and shows the identification of, in our notation, the distribution
of x′

j (β − E [β|x])+ϵi,j conditional on x. He does not explore iden-
tification of an unconditional joint distribution F(β). Knowledge of
the unconditional distribution F(β) is necessary for some uses of
structural models, including prediction of demand and x’s not in
the support of the original data (the new goods problem).

All of our arguments can be made conditional on the values of
discrete covariates, butwe donot explore identifying a distribution
of random coefficients on discrete covariates. No other paper
has identified such a distribution, either. Therefore, our results
do not allow the random coefficients logit to be a flexible error
components model for parameterizing the correlation between
products grouped into various nests. Unlike the subset of the
literature that is nonparametric on the contribution of x to
the utility of each choice, we follow Ichimura and Thompson
(1998) and the widespread empirical literature using the random
coefficients logit and focus on the linear index x′

jβi.

3. Generic model

To deliver the key idea behind our identification strategy, we
shall first consider an abstract model that includes the random
coefficients logit with fixed intercepts α as a special case. The
econometrician observes K < ∞ covariates x = (x1, . . . , xK )′

and the probability of some discrete outcome, P(x). Here P(x)
denotes the conditional choice probability of a particular outcome.
For amodelwith amore complex outcome (including a continuous
outcome y), we can always consider whether some event, say
y < 1

2 , happened or did not happen. For a multinomial choice, the
event could be picking choice j or picking any other choice. P(x)
is the probability of the event happening. The regressor vector x is
independent of β .

Let g

α, x′β


be the probability of an agent with characteristics

β taking the action. In our framework, the researcher specifies
g

α, x′β


. A special case is g


α, x′β


= g


α + x′β


. Our goal is

to identify the distribution function F(β) in the equation

P(x) = P (x, F , α) ≡

∫
g

α, x′β


dF(β). (3)

Identification means that a unique (F , α) solves this equation for
all x. This is the definition of identification used in the statistics
literature (Teicher, 1963).

We prove the main theoretical results for the case where the
true values α0 of the homogeneous parameters α are identified in
a first stage using an auxiliary argument, sowe canwrite g


x′β


=

g

α0, x′β


, with an abuse of notation. Typically, this auxiliary

argument will involve the point x = 0, as then (3) becomes
P (0) = P (0, F , α) = g (α, 0) and in some models we can set
α0

= g−1 (P (0)). The point x = 0 will otherwise not be needed
to be in the support of x for the general result. We rewrite the
model as

P (x, F) ≡

∫
g

x′β

dF(β). (4)

Let B ⊆ RK be the support of the random coefficients and let
F (B) be the set of all distributions on that support. LetX ⊆ RK be
the support of the covariates. Let F 0 be the true distribution. Then
we have P(x) = P


x, F 0


in the support of x, X.

4. Non-constructive identification

We first present a non-constructive identification theorem
and, in a later section, turn to constructive identification. Our
constructive identification section is written to be self-contained,
so a reader can skip this section if not interested.

Definition 1. The distribution F 0
∈ F (B) is uniformly identified

over choices of (B, X0) if for any F 1
∈ F (B), F 1

≠ F 0, there exists
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X1
0 ⊂ X0 such that P


x, F 0


− P


x, F 1


≠ 0 for all x ∈ X1

0 for any
choices of the support of random coefficients B and the subset of
the support of covariates X0 ⊂ X, where B is compact and X0 is
a nonempty open set.

Note that in this definition the set X1
0 can vary depending on

the alternative distribution F 1. When the measure of the set X1
0

is strictly positive, identification holds with positive probability.
We do not assume the researcher knows B, other than that it is
compact. The ‘‘nonempty interior’’ assumption below does rule
out covariates with discrete support, as we discussed earlier. All
arguments in this paper can be made conditional on the values
of discrete characteristics. Otherwise and as a referee suggests,
one may take a set identification approach when x takes values
on a fine grid. However, this is beyond the scope of this paper.
For explicitness, we emphasize the assumption on the covariates
implied in the previous definition.

Assumption 2. 1. The support of the independent variables, X ⊆

RK includes a nonempty open set.
2. Let all elements of x be continuous.

Assumption 2.1 will be violated if x includes higher order terms
of xk’s or interactions of xk’s (e.g., x2 = x21 or x3 = x2 · x1) in
its elements. Therefore our identification results do not allow for
those terms in the model.

Definition 3. The function g (z) is real analytic at c ∈ Z ⊆ R
whenever it can be represented as a convergent power series,
g (z) =

∑
∞

d=0 ad (z − c)d, for a domain of convergence around c.
The function g (z) is real analytic on an open set Z ⊆ R if it is real
analytic at all arguments z ∈ Z.

Similarly (Definition 2.2.1 inKrantz andParks (2002)) a function
∆(x), with domain an open subset T ⊆ RK and range R, is called
(multivariate) real analytic on T if for each x ∈ T the function
∆(·) may be represented by a convergent power series in some
neighborhood of x.

Note that the domain of the real analytic function g(·) is a subset
of R. A real analytic function on a real domain may not be analytic
on a complexdomain. Our non-constructive identification theorem
follows.

Theorem 4. Assume that the vector α0 is identified using some
auxiliary argument and let Assumption 2 hold. Let B be compact and
X0 be a nonempty open subset of X. The distribution F 0

∈ F (B)
is uniformly identified over choices of (B, X0) if the function g(·) is
real analytic, bounded, nonconstant and satisfies g (0) ≠ 0.

4.1. Lemmas that factor into the proof of Theorem 4

The proof of Theorem 4 is a consequence of two lemmas. We
state the lemmas here for those interested in the logic behind the
identification theorem.

We say that F 0
∈ F (B) is uniformly identified over choices

of B, holding a set of values of x, T0, fixed, whenever P

x, F 0


−

P

x, F 1


≠ 0 for all x ∈ T 1

0 ⊂ T0 for any F 1
∈ F (B), F 1

≠ F 0 and
for any compact choice for the support of the random coefficients,
B. In this definition, T0 does not have to be included in the support
of x. P


x, F 0


and P


x, F 1


for x ∈ T0 ⊈ X are well defined from

the model in (4) and then we have P(x) = P

x, F 0


only for x ∈ X

if F 0 is the true distribution.

Lemma 5. Assume that the vector α0 is identified using some auxil-
iary argument. Let g(·) be real analytic and let a set of x, T , contain
a nonempty open set. The distribution F 0

∈ F (B) is uniformly iden-
tified over choices of (B, T0), with B compact, with nonempty open
sets T0 ⊂ T if and only if F 0

∈ F (B) is uniformly identified over
compact choices of B , for at least one fixed T0 ⊆ T .
The lemma and its proof (in our Appendix for completeness)
are inspired by Theorem 3.8 in Stinchcombe and White (1998), a
paper on consistent specification testing. The content of Lemma 5
is that identification for any choice of nonempty open set T0
automatically holds if identification is checked for one, likely
convenient choice of T0. The most convenient choice of T0 is the
one with the widest variation, or T0 = T = RK as in Lemma 6
below.

The key idea of Lemma 5 is as follows. When g(·) is real
analytic and B is compact, the integral of the form ∆(x) ≡
g

x′β

d(F 1(β) − F 0(β)) itself is real analytic. If a real analytic

function is equal to 0 on an open set, it equals 0 everywhere.1
Therefore if ∆(x) is 0 on an open set T0, it must be zero
everywhere on T . This implies, as we formalize in the proof,
that if identification holds on an open set T0, it should also hold
everywhere.

Lemma 6. Assume that the vector α0 is identified using some
auxiliary argument. Let g(·) be bounded and nonconstant and satisfy
g (0) ≠ 0. Then the distribution F 0

∈ F (B) is uniformly identified
over choices of B for the choice T = RK .

Lemmas 5 and 6 together imply Theorem 4. Lemma 6 shows
that themodel (4) identifies F 0 against any F 1

≠ F 0 withT0 = T =

RK and Lemma 5 says then identification should hold with any
nonempty open set T0 ⊆ T . Therefore, in Theorem 4 we conclude
that the F 0 that solves P(x) = P(x, F) in (4) is identified with any
nonempty open set X0 ⊂ X, noting that we have P(x) = P(x, F 0)
in the support of x. Lemma 5 shows the role of g(·) being real
analytic for identification: it removes the full support condition.

Lemma 6 follows from Theorem 5 in Hornik (1991) with
very minor modifications (see its proof for completeness in our
Appendix). Hornik is a paper on functional approximation using
a function that takes a linear index. To understand the connection,
note that if F 0 is not identified on T = RK we must have F 1

≠ F 0

such that
0 = P(x, F 1) − P(x, F 0)

=

∫
B

g(x′β)d(F 1(β) − F 0(β)) for all x ∈ T . (5)

In the context of our identification problem, Hornik’s Theorem 5
says that as long as g(·) is bounded and nonconstant, only F 1

= F 0

satisfies (5) (i.e. (5) implies F 1
= F 0) and hence identification

holds. Hornik called a function g(·) that has this identification
property discriminatory.

Other than the requirement that g (0) ≠ 0, Lemma 6 would be
exactly the same as the statement of Theorem 5 of Hornik (in our
identification context) if our model was g


x′

1β + x2

, where in a

study of identification x2 is a special regressor with large support
and known sign. However, in our identification problem it suffices
to modify Hornik’s general result (and its proof) so that x2 is only
used to establish that g (x2) ≠ 0 for some x2 ∈ R (because g is
nonconstant), whichwe replacewith the requirement that g (0) ≠

0. We do not need data on x = 0 to establish that g (0) ≠ 0;
indeed P (0, F) = g (0) is known from the choice of g (and the
identification of α), as it is a trivial function of F . To our knowledge,
no other paper has linked the result on function approximation in
Hornik to the identification of distributions of heterogeneity.

1 Suppose h(z) is a real analytic function on an open interval Z and equal to zero
on an open sub-interval Z0 ⊆ Z containing z0 . Then we have h(l)(z0) = 0 for any
l-th order derivative of h. Now set Z̄ = Z ∩ {z: h(l)(z) = 0 for l = 0, 1, 2, . . .}.
By continuity, Z̄ is closed in the relative topology of Z, while by assumption on
Z, Z̄ is open. Thus, by the connectedness of Z, we have Z̄ = Z. Therefore if an
analytic function h(z) is zero on an open interval, it is equal to zero everywhere
(Corollary 1.2.6 in Krantz and Parks (2002)). Consider a simple example h(z) =
exp(az)+b exp(cz)

1+exp(z) and note that h(z) is real analytic because sums or reciprocal of real
analytic functions are real analytic. Assume h(z1) = h(z2) = 0 for z1 ≠ z2 ∈ Z.
Then simple algebra yields a = c and b = −1, implying h(z) = 0 everywhere.
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5. An alternative, constructive approach

The previous identification approach is fairly general but is not
constructive. In other words, the identification argument implies
that P


x, F 0


−P


x, F 1


≠ 0 for a set of xwith a nonempty interior

(positive probability) but does not give a procedure to construct
F 0. Here we give such a constructive identification argument. This
section is self-contained in that the results do not refer to the
non-constructive identification arguments. The downside of the
constructive arguments is that an open set around the point x = 0
will play a special role in the identification of the distribution of
random coefficients, while the point x = 0 only possibly played
the role of identifying homogeneous parameters α in the prior,
non-constructive argument. On the other hand, compactness of
the parameter space B will not be imposed, as it was in the non-
constructive argument. Indeed, B can equal RK . The function g(·)
will not need to be real analytic. As before, the homogeneous
parameters α can be identified in a first stage.

Assumption 7. The absolute moments of F(β), given by ml =
‖β‖

l dF(β), are finite for l ≥ 1 and satisfy the Carleman
condition: Σl≥1m

−1/l
l = ∞.

A distribution F satisfying the Carleman condition is uniquely
determined by its moments (Shohat and Tamarkin, 1943, p. 19).
The Carleman condition is weaker than requiring the moment
generating function to exist. The Carleman condition gives
uniqueness for distributions with unrestricted support. If the
support of F is known and compact, uniqueness follows without
the Carleman condition. Let g(l)(c) be the l-th derivative of g(c)
evaluated at c.

Assumption 8. 1. g(c) is infinitely differentiable on an open set
C ⊂ R that includes c = 0.

2. g(l)(0) is nonzero and finite for all l ≥ 1.

For a (non-probability) example, if g(c) = D · exp(c), then
Assumption 8 is satisfied because g(l)(0) = D for all l. The logit
choice probabilities will be shown to be infinitely differentiable.
We will investigate to what extent Assumption 8.2 holds for logit
choice probabilities when we turn from the generic model to the
logit model. If g(·) is a polynomial function of any finite degree,
g does not satisfy Assumption 8.2 because its derivative becomes
zero at a certain point. Also, a particular polynomial of order p could
potentially have all of its derivatives of lower and higher order than
order p be 0 at c = 0. For polynomials where only derivatives of
order higher than v are 0 at c = 0, we identify the distribution of
β up to the v-th moment.

We will maintain the support assumption for the regressors
that was earlier used for the non-constructive results.

Assumption 9. 1. The support of the independent variables, X ⊆

RK includes a nonempty open set.
2. Let all elements of x be continuous.

The key limitation of the constructive identification theorem is
its reliance on regressor variation in an open set around the point
x = 0.

Assumption 10. The support X contains an open set surrounding
x = 0.

Recall from the introduction that, in a multinomial choice model,
the point x = 0 could arise via re-centering.

The constructive identification argument is quite simple. The
P(x) = P


x, F 0


are the observed choice probabilities in the data.

We illustrate the argument for the special case where K = 2 and
so x′β = x1β1 + x2β2. At x1 = x2 = 0,
∂P

x, F 0


∂x1


x=0

= g(1) (0)
∫

β1dF 0(β) = g(1) (0) E [β1] ,

where β1 arises from the chain rule and the expression identi-
fies the mean of β1, because P


x, F 0


is in the data and g(1) (0)

is a known constant that does not depend on β . Likewise,
∂P(x,F0)

∂x2


x=0

/g(1) (0) equals E [β2],
∂2P(x,F0)

∂x1∂x2


x=0

/g(2) (0) equals

E [β1β2], and ∂2P(x,F0)
∂x21


x=0

/g(2) (0) equals E

β2
1


. Additional

derivatives will identify the other moments of β = (β1, β2). We
make no assumption that the components β1 and β2 are indepen-
dently distributed; F 0 is an unrestricted joint distribution.

Theorem 11. Assume that the vector α0 is identified using some aux-
iliary argument. Suppose Assumptions 9 and 10 hold.
• Suppose Assumptions 7 and 8 also hold. Then the true F 0 is identi-

fied.
• Assume the first L derivatives of g(c)with respect to c are nonzero

when evaluated at the scalar argument c = 0. Then all moments
of β up to order L (including cross moments) are identified.

The proof is in the Appendix. Note the approach’s simplicity:
we need only to check for non-zero derivatives of g(c) at c = 0.
This technique can be applied to show the identification of many
differentiable economic models that use linear indices x′β . The
approach is constructive: if g(2) (0) ≠ 0, we can identify all own
second moments and all cross-partial moments between random
coefficients. If the first 100 derivatives of g(c) at c = 0 are nonzero,
then we identify at least the first 100 moments of the random
coefficients.

6. Identification of the random coefficients logit model

6.1. Homogeneous parameters for the logit

Our leading example of a mixtures model is the random
coefficients logit as outlined in the introduction. We first show we
can identify the homogeneous terms,α0

j for all j. Consider the point
x = 0. Algebra shows that

log Pr

j | x = 0; F 0, αJ,0

− log Pr

0 | x = 0; F 0, αJ,0

= α0
j ∀ j = 1, . . . , J,

where Pr

j | x = 0; F 0, αJ,0


is identified from the data for all j =

0, 1, . . . , J . The vector αJ,0 is identified at the point x = 0.
Following this, we can show the parameters (α, γ ′

w) in αj ≡

αj(w) = α+w′

jγw are identified if αj also depends on some covari-
ates wj. In this case let Pr (j | x, w) = Pr


j | x, w; F 0, α0, γ 0

w


be

the choice probability for product j when the regressors are x and
w. The population linear regression of log Pr(j | x = 0, w; F 0, α0,
γ 0

w)−log Pr

0 | x = 0, w; F 0, α0, γ 0

w


on a constant and the vector

wj will identify the constant term α0 and the homogeneous coeffi-
cients γ 0

w as long as the density ofw = (w′

1, . . . , w
′

J) is strictly pos-
itive on its support at x = 0 and E


(1, w′

j)
′(1, w′

j) | x = 0

is non-

singular. If some elements ofwj are discrete, we use a density with
respect to the counting measure for the discrete elements. Thus,
the homogeneous terms are identified from differences in market
shares when all products are evaluated at x = 0. The identification
of F 0 below can proceed at any given value ofw = w̃ in the support
of w as long as x = 0 is allowed at w̃.

Remark 12. Assume that x and w jointly have product support
X × W . The identification argument for


α0, γ 0

w


directly relies on

a set of (x, w) of measure zero on X×W only because of the focus
on the point x1 = · · · = xJ = 0, not because of any additional
restrictions on w.
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We collect these conditions for the identification of

α0, γ 0

w


.

Assumption 13. The density of w = (w′

1, . . . , w
′

J) is strictly
positive on its support at x = 0 and E


(1, w′

j)
′(1, w′

j) | x = 0

is

nonsingular.
Below, unless necessary, we write αj ≡ α0

j (wj) = α0
+ w′

jγ
0
w

and αJ
≡ αJ,0(w) = (α0

1(w1), . . . , α
0
J (wJ)) for ease of notation

that covers both the cases where αj is a constant and where αj
depends on some covariates wj.

6.2. Distribution of the random coefficients for the logit

Using some duplication of notation, we can fit the mixed logit
model into the mixtures framework by defining the logit choice
probabilities for some particular choice j as

gj

αJ , x′

1β, . . . , x′

Jβ


=
exp


αj + x′

jβ


1 +

J∑
j′=1

exp

αj′ + x′

j′β
 .

Let xj′ = 0 for all j′ ≠ j. With one outside good and J inside goods,
the choice probability of alternative j given β is
gj

αJ , 0, . . . , x′

jβ, . . . , 0


=
exp


x′

jβ


exp

−αj


+
∑
j′≠j

exp

αj′ − αj


+ exp


x′

jβ
 .

Then we obtain the integrated choice probability
Pj

0, . . . , xj, . . . , 0, F , αJ

=

∫
gj

αJ , 0, . . . , x′

jβ, . . . , 0

dF(β), (6)

where Pj

0, . . . , xj, . . . , 0, F , αJ


denotes the conditional choice

probability of the good j at x = (0′, . . . , x′

j, . . . , 0
′) and αJ .

Define Aj

αJ


= exp

−αj


+
∑

j′≠j exp

αj′ − αj


and, in

another duplication of notation,

gj(αJ , c) = gj(Aj(α
J), c) =

exp(c)
Aj

αJ

+ exp(c)

,

which is a function of a single argument c given Aj. Therefore, the
formulation (6) is a special case of (3), wherewe take P


xj, F , α


=

Pj

0, . . . , xj, . . . , 0, F , αJ


and g


αJ , x′

jβ


= gj

αJ , x′

jβ

. The

choice j identification focuses on is arbitrary.

6.2.1. Non-constructive identification for the logit

Assumption 14. At some w = w̃, the support of x, X, contains
x = 0, but not necessarily an open set surrounding it. Further, the
support contains a nonempty open set of points (open inRK ) of the
form


x′

1, . . . , x
′

j−1, x
′

j, x
′

j+1, . . . , x
′

J


=

0′, . . . , 0′, x′

j, 0
′, . . . , 0′


.

We require that this support condition hold only at some values of
w if αJ depends on w. If x is independent of w or if the support of
(x, w) is a product space X × W , the support condition does not
depend on w. The identification approach needs x = 0 to be in the
support of x so that the homogeneous parameters are identified
and so that identification can exclusively focus on variation in the
characteristics of choice j. The point x = 0 otherwise plays no role
in the identification of the distribution of random coefficients. In
other words, identification of the random coefficients can come
from a small open set of xj values far from xj = 0. The difference
between Assumptions 10 and 14 is subtle, but the role of the point
x = 0 in identification of F 0 is quite different in the constructive
and non-constructive identification approaches.

Theorem 15. Let the true model be the multinomial logit and
let Assumptions 2, 13 and 14 hold. The homogeneous parameters αJ,0
are identified. Also, the distribution F 0
∈ F (B) is uniformly identified

over choices of

B, XK

0


, whereXK

0 ⊆ RK are nonempty open subsets
of the space of characteristics of one particular product, XK .
Identification holds in any nonempty open set of product
characteristics satisfying the conditions in the theorem. This
theorem is a specialization of Theorem 4 to the multinomial logit.
The logit gj


αJ , x′

jβ

is nonzero at all xj ∈ XK for finite αJ , is

bounded, and is real analytic. Real analyticity holds because the
function exp (·) is real analytic and the function gj(αJ , c) is formed
by the addition and division of never zero real analytic functions,
and so is itself real analytic (Krantz and Parks, 2002). Thus, the
distribution of random coefficients in themultinomial logit is non-
constructively identified.

6.2.2. Constructive identification
Let g(l)

j


αJ , 0


be the l-th derivative of gj


αJ , c


=

exp(c)
Aj(αJ)+exp(c)

with respect to c evaluated at c = 0. Define the set

A =


αJ

∈ RJ
| g(l)

j


αJ , 0


≠ 0 for all integer l ≥ 1


. (7)

This is the set of values of homogeneous terms, identified in the
first stage, where the logit has nonzero derivatives and hence all
moments of β are identified using Theorem 11. If A = RJ , then we
would write the logit model is identified. Unfortunately, A ⊂ RJ ,
although we will show that RJ

\ A is a set of measure 0.

Assumption 16. At some w = w̃, the support X contains a non-
empty open set of points (open in RK ) of the form


x′

1, . . . , x
′

j−1, x
′

j,

x′

j+1, . . . , x
′

J


=

0′, . . . , 0′, x̃′

j, 0
′, . . . , 0′


surrounding x̃j = 0.

Theorem 17. Let Assumptions 7, 9, 13 and 16 hold. The homoge-
neous parameters αJ,0 are identified. Also the true F 0 is identified for
any αJ

∈ A. Further, A is a set of measure 1 in RJ .
Identification of F 0 follows directly from Theorem 11 and the

definition of A once Assumption 8(1) is satisfied. A function that is
real analytic is infinitely differentiable. The proof in the Appendix
shows that the set A has measure 1. We note that αJ is always
identified from the data at x = 0 and whether αJ

∈ AL can be
computationally tested using computer algebra software, where

AL
=


αJ

∈ RJ
| g(l)

j


αJ , 0


≠ 0 for all integer 1 ≤ l ≤ L


and L is the maximum order of the derivative considered by the
computer. As variation in w causes variation in αj = α + w′

jγw ,
variation in w (allowing regressors without random coefficients)
ensures that the true F 0 is identified at all possible αJ values, and
not just identified for any αJ

∈ A.
As stated previously, our constructive identification argument

uses only variation in product characteristics xj around zero or
around zero after centering, e.g., we can redefine xj,k = xj,k − x̄k
where x̄k is a constant term that is the same across the inside
goods. Because we do not advocate analog estimation (instead
preferring our mixtures estimator in Fox et al. (forthcoming) or
anothermixtures estimator), we do not see using thin slices of data
in identification as a problem for estimation.

7. Extensions

7.1. Identification for higher order terms and interactions

Our identification results have not been extended to models
with higher order polynomial terms and interaction terms. Our
support conditions rule out these models for both the non-
constructive and constructive identification arguments. When xj,k
includes higher order terms or interactions of characteristics, the
support of xj cannot include a nonempty open set because xj,k has
components that are nonlinearly dependent. This is a limitation of
our identification results.
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7.2. Need for a special regressor for a random coefficient for the
constant term

Consider the utility specification ui,j = αi + x′

jβi + ϵi,j, where
we now allow for a random coefficient αi on the constant term,
which affects the utility of the inside relative to the outside goods.
Consider the case of J = 1, or one inside and one outside good.
In this case, the unspecified density fα (α) subsumes the type I
extreme value density on ϵi,j. This puts us in themodel of Ichimura
and Thompson (1998), where all previous identification results
require special regressors (regressors with large support).

7.3. Endogeneity

If there is endogeneity in price due a demand shock or omitted
product characteristic ξj in the utility of choice j, one can adopt
Kim and Petrin (2009)’s control function approach. Kim and Petrin
show that under a set of conditions (including restrictions on
the supply side), one can include a proxy for ξj that is a (to be
identified) nonparametric function of the residuals for all products
from first stage regressions of pricing equations. Alternatively, one
can identify ξj in a first stage using both a special regressor and
instruments with the approach of Berry and Haile (2010). Either
way, ξj or proxies for it can be added to the characteristic vector xj
and identification using our approach can be considered.

8. Conclusions

The random coefficients logit model has been used in empirical
studies for over thirty years. In contrast to other work on
identification in binary and multinomial choice, we exploit the
type I extreme value distribution on the additive errors to show
that the distribution of random coefficients is nonparametrically
identified under an alternative set of assumptions, which are
non-nested with those used in other approaches. By exploiting
this special structure, we eliminate assumptions about the large
support and the signs of coefficients on special regressors. We do
use identification at one particular point (x = 0), but, in the non-
constructive identification theorem, only to identify homogeneous
parameters such as the product intercepts α in a first stage and
to focus on variation in the characteristics of only one choice j.
An open set around x = 0 is the only source of identification
for our constructive identification result. From an econometric
theory perspective, either approach allows complete proofs for
the consistency of nonparametric estimators of the distribution of
random coefficients.

The proof of identification is also comforting to empirical
researchers. Prior to our theorem, it was not known whether
variation in x was sufficient to identify the distribution of the
random coefficients in these models. One possibility was that
the normality assumptions typically imposed on the distribution
were crucial to identification: without restricting attention to a
particular parametric functional form, two different distributions
of random coefficients would be consistent with the data in
the model, even with data on a continuum of x. We show that
indeed the random coefficients logit model is nonparametrically
identified, which provides a solid econometric foundation for
its widespread use in empirical work. We can condition on
discrete covariates, but, like the rest of the literature, we cannot
point identify the distribution of random coefficients on discrete
characteristics. Our identification results have not been extended
to models with higher order terms or interaction terms.
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Appendix

A.1. Proof of Lemma 5

We rephrase the proof of Theorem 3.8 in Stinchcombe and
White (1998) in terms of our identification problem; otherwise our
proof is essentially the same.

The forward direction of Lemma 5 holds because a stronger
definition of identification implies a weaker definition. For the
reverse direction of Lemma 5, assume to the contrary: the
distribution of random coefficients is identified uniformly over B
with a nonempty open set T0 ⊂ T but there exists a nonempty
open set T̃ ⊂ T and a compact set B̃ where identification fails.
The lack of identification means that there exist F 0, F 1

∈ F

B̃


such that F 0
≠ F 1 but P(x, F 0) = P(x, F 1) for all x ∈ T̃ . It follows

that ∆(x) ≡


B̃
g(x′β)d


F 0(β) − F 1(β)


= 0 for all x ∈ T̃ .

Because B̃ is compact and g(·) is real analytic, ∆(x) is itself a
real analytic function. If a real analytic function equals to 0 on an
open set, it equals 0 everywhere. If ∆(x) = 0 everywhere, then
F 0

∈ F

B̃

cannot be identified on the set T0, which gives a

contradiction.

A.2. Proof of Lemma 6

For completeness, we reconstruct the proof of Theorem 5 in
Hornik (1991) in terms of our identification problem. Most of the
proof steps are essentially identical.

For the purpose of contradiction pick a F 1
∈ F (B) such that

F 1
≠ F 0 and suppose g(·) is bounded and nonconstant such that

B
g(x′β)d


F 0(β) − F 1(β)


= 0 for all x ∈ RK . Let σ denote

the finite signed measure (concentrated) on B corresponding to
F 0

− F 1. Then fix η ∈ RK and let ση be the finite signedmeasure on
R induced by the transformation β → η′β in the following sense:
for all Borel sets of R we have ση(C) = σ {β ∈ B: η′β ∈ C}.

Then at least for all bounded functions χ on R,


B
χ(η′β)d

F 0(β) − F 1(β)


=


R χ(t)dση(t). Therefore by assumption on
g(·), we have

0 =

∫
B

g(λη′β)d

F 0(β) − F 1(β)


=

∫
R
g(λt)dση(t)

for all λ ∈ R. To simplify notation, denote L = L1(R) for the space
of integrable functions on R (with respect to Lebesgue measure)
and M = M(R) for the space of finite signed measures on R. For
f ∈ L, f̂ denotes the Fourier transform. Similarly, for µ ∈ M , µ̂
denotes the Fourier transform.

Because g(0) ≠ 0 and setting λ = 0, we find that in particular∫
R
dση(t) = σ̂η(0) = 0. (8)

For η = 0, σ0 is concentrated at t = 0 and σ0{0} = σ̂0 = 0, hence
σ0 = 0.

Now consider η ≠ 0 and the integral∫
R
g(λt)dση(t) = 0 (9)

and note that ση is absolutely continuous with respect to Lebesgue
measure (on R) by construction of ση from σ . Let h be the
corresponding Radon–Nikodym derivative and note h ∈ L. Then
ĥ = σ̂η and in particular from (8) we have ĥ(0) = 0. (9) is then
equivalent to


R g(λt)h(t)dt = 0. Rewriting λ = 1/τ with τ ≠ 0

and applying the change of variables t → τ t + s, we obtain for all
nonzero real τ∫

R
g

t +

s
τ


h(τ t + s)dt = 0. (10)

Write Mτh(t) for h(τ t). The above equation implies that


R g(t +

c)f (t)dt for some c vanishes for all f contained in the closed
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translation invariant subspace I spanned by the familyMτh, τ ≠ 0.
The subspace I is also an ideal in LbyTheorem7.1.2 inRudin (1967).
Following the notation in Rudin (1967) (also in Hornik (1991)),
write Z(f ) for the set of all ω ∈ R where the Fourier transform
f̂ (ω) for f ∈ L vanishes and define Z(I), the zero set of I , as the set
of ω where the Fourier transforms of all functions in I vanish.

For the purpose of contradiction, suppose that h is nonzero.
As Mτh(ω) = ĥ(ω/τ)/τ and ĥ(0) = 0, following exactly the
same argument in Hornik (1991) we conclude that Z(I) = {0}
and also that I is precisely the set of all integrable functions f
with


R f (t)dt = f̂ (0) = 0. Because I is an ideal subspace of L

and h is nonzero, the statements above together with (10) imply
that now the integral


R g(t + c)f (t)dt for some c vanishes for all

integrable functions f ∈ L that have zero integral. As Hornik (1991)
argues, this implies that g(·) must be constant, which was ruled
out by our assumption that g(·) is bounded and nonconstant.2We
therefore conclude h = 0 and thus ĥ = σ̂η is identically zero. By the
uniqueness Theorem 1.3.7(b) in Rudin (1967), we conclude ση = 0
for all η ∈ RK .

To complete the proof, let σ̂ (η) =


B
exp(iη′β)dσ(β) be the

Fourier transform of σ at η. It follows that

σ̂ (η) =

∫
B

exp(iη′β)dσ(β) =

∫
R
exp(it)dση(t) = 0,

and thus σ̂ = 0. Again invoking the uniqueness Theorem 1.3.7(b)
in Rudin (1967), we conclude σ = 0 implying F 1

= F 0. This
completes the proof.

A.3. Proof of Theorem 11

First we introduce some notation for gradients of arbitrary
order, which we need because F(β) has a vector of K arguments,
β . Let t be a vector of length T . For a function h(t), we denote the
1 × K v block vector of υ-th order derivatives as ∇

υh(t). ∇υh(t) is
defined recursively so that the k-th block of ∇

υh(t) is the 1 × T
vector hυ

k (t) = ∂hυ−1
k (θ)/∂t ′, where hυ−1

k is the k-th element of
∇

υ−1h(t). Using a Kronecker product ⊗, we can write ∇
υh(t) =

∂υh(t)
∂t ′ ⊗ ∂t ′ ⊗ · · · ⊗ ∂t ′  
υ Kronecker product of ∂t ′

.

Take the derivatives with respect to the covariates x on both
sides of P(x, F) =


g

x′β

dF(β) and evaluate the derivatives at

x = 0. By Assumption 8, for any v = 1, 2, . . . and the chain rule
repeatedly applied to the linear index x′β ,

∇
υP (x, F) |x=0 =

∫
g(v)


x′β


x=0


β ′

⊗ β ′
⊗ · · · ⊗ β ′


dF(β)

= g(v) (0)
∫ 

β ′
⊗ β ′

⊗ · · · ⊗ β ′

dF(β). (12)

2 If g(·) is not constant, then we can easily construct an example such that
R g(t + c)f (t)dt ≠ 0 when


R f (t)dt = 0. For an arbitrary constant δ, let

E1 = {t ∈ R|g(t + c) > δ} and E2 = {t ∈ R|g(t + c) ≤ δ} such that
the (Lebesgue) measures on E1 and E2 are both positive (so this rules out g(·)
is a constant function), respectively as µ1 = µ{E1} and µ2 = µ{E2}. Define
f (t) = (1{t ∈ E1}/µ1 − 1{t ∈ E2}/µ2)fµ(t) with fµ(t) the pdf with respect to
the measure µ and note by construction


R f (t)dt = 0. However, consider∫

R
g(t + c)f (t)dt =

∫
R
{g(t + c) − δ}f (t)dt

=

∫
R
{g(t + c) − δ}1{t ∈ E1}fµ(t)dt/µ1

+

∫
R
{δ − g(t + c)}1{t ∈ E2}fµ(t)dt/µ2 > 0, (11)

where the first equality holds because


R δf (t)dt = 0 and the last inequality holds
because both integrals in (11) are nonnegative and at least one is strictly positive,
noting that g(t + c) − δ > 0 for t ∈ E1 and δ − g(t + c) ≥ 0 for t ∈ E2 .
For each v there are K v equations. Recall g is a known function.
Therefore, as long as g(v)(0) is nonzero and finite for all v =

1, 2, . . . , we obtain the v-th moments of β for all v ≥ 1. Now
by Assumption 7, F satisfies the Carleman condition. Therefore, F 0

is identified since a probability measure satisfying the Carleman
condition is uniquely determined by its moments.

A.4. Proof of Theorem 17

Identification arises from identifying all moments, as in
Theorem 11. We wish to show that the set A as defined in (7) has
measure 1 in RJ .

LetDc be the derivative operator with respect to c. We suppress
Aj(α

J)’s dependence on αJ and write Aj = Aj(α
J). For this purpose,

we first obtain the derivatives of gj

αJ , c


with respect to c ,

Dcgj

αJ , c


=

Aj + ec

−2 Ajec,

D2
cgj

αJ , c


=

Aj + ec

−3 A2
j e

c
− Aje2c


D3
cgj

αJ , c


=

Aj + ec

−4 A3
j e

c
− 4A2

j e
2c

+ Aje3c

, . . . .

For p ≥ 3, now we write the (p − 1)-th derivative as
Dp−1
c gj


αJ , c


= (Aj + ec)−p∑p−1

l=1 γ
(p)
p−lA

p−l
j elc . Then, we can write

the p-th derivative as

Dp
cgj

αJ , c


=


1

(Aj + ec)p+1

p−
l=1

γ
(p+1)
p+1−lA

p+1−l
j elc


(13)

= DcDp−1
c gj


αJ , c


= Dc


1

(Aj + ec)p

p−1−
l=1

γ
(p)
p−lA

p−l
j elc



=
1

(Aj + ec)p

p−1−
l=1

lγ (p)
p−lA

p−l
j elc −

1
(Aj + ec)p+1

p
p−1−
l=1

γ
(p)
p−lA

p−l
j e(l+1)c

=
1

(Aj + ec)p+1


(Aj + ec)

p−1−
l=1

lγ (p)
p−lA

p−l
j elc −

p−1−
l=1

pγ (p)
p−lA

p−l
j e(l+1)c



=
1

(Aj + ec)p+1


p−1−
l=1

lγ (p)
p−lA

p+1−l
j ela +

p−1−
l=1

lγ (p)
p−lA

p−l
j e(l+1)c

−

p−1−
l=1

pγ (p)
p−lA

p−l
j e(l+1)c



=
1

(Aj + ec)p+1


γ

(p)
p−1A

p
j e

c
+

p−1−
l′=2

l′γ (p)
p−l′A

p+1−l′
j el

′c

+

p−1−
l=1

lγ (p)
p−lA

p−l
j e(l+1)c

−

p−1−
l=1

pγ (p)
p−lA

p−l
j e(l+1)c

 (14)

=
1

(Aj + ec)p+1


γ

(p)
p−1A

p
j e

c
+

p−2−
l=1

(l + 1) γ
(p)
p−l−1A

p−l
j e(l+1)c

+

p−1−
l=1

lγ (p)
p−lA

p−l
j e(l+1)c

−

p−1−
l=1

pγ (p)
p−lA

p−l
j e(l+1)c

 (15)

=
1

(Aj + ec)p+1

 γ
(p)
p−1A

p
j e

c
− γ

(p)
1 A1

j e
pc

+

p−2−
l=1


(l + 1) γ

(p)
p−l−1 + lγ (p)

p−l − pγ (p)
p−l


Ap−l
j e(l+1)c

, (16)

where in (14) and (15), we take out the first element in the first
sum and change the index l′ to l+1. (16) is obtained by rearranging
terms and collecting coefficients on Ap−l

j e(l+1)c for j = 1 to p − 2.
To fix the undetermined coefficients γ

(p)
p−l’s, we compare the

coefficients from (13) and (16) and obtain
p−

l=1

γ
(p+1)
p+1−lA

p+1−l
j elc

= γ
(p)
p−1A

p
j e

c
+

p−2−
l=1


(l + 1) γ

(p)
p−l−1 + lγ (p)

p−l − pγ (p)
p−l


× Ap−l

j e(l+1)c
− γ

(p)
1 A1

j e
pc .
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We find

γ (p+1)
p = γ

(p)
p−1 (17)

γ
(p+1)
p−l = (l + 1) γ

(p)
p−l−1 − (p − l) γ

(p)
p−l for p ≥ 3 (18)

γ
(p+1)
1 = −γ

(p)
1 . (19)

This system generates the coefficients for all p ≥ 1. For the initial
value, we obtain γ

(2)
1 = 1. When p = 2, we find

γ
(3)
2 = γ

(2)
1 = 1, γ

(3)
1 = −γ

(2)
1 = −1

and when p = 3, we find

γ
(4)
3 = γ

(3)
2 = 1, γ

(4)
2 = 2γ (3)

1 − 2γ (3)
2 = −4,

γ
(4)
1 = −γ

(3)
1 = 1.

Now we examine whether Dp
cgj

αJ , c


c=0 can take the value

of zero for some Aj (and hence for some αJ ) at some p. For
this purpose, we evaluate the derivatives at c = 0 and obtain
expressions with respect to Aj for the p-th order derivative as
Dp
cgj

αJ , c


c=0 =

1
(Aj+1)p+1

∑p
l=1 γ

(p+1)
p+1−lA

p+1−l
j = 0 for p ≥ 1. This

is equivalent to solving

p−
l=1

γ
(p+1)
p+1−lA

p−l
j = 0. (20)

We note that, when αj’s are not equal to zero, we have some non-
integer solutions of the Eq. (20). Belowwe, however, show that the
set

AC
=

αJ

| Dp
cgj

αJ , c


c=0 = 0

for at least one p ≥ 1, αJ
∈ RJ

has measure zero in RJ and this will complete our proof.
The set of values A ⊂ R+ that collect values of Aj that solve

the Eq. (20) for at least one p is countable because for any order p
the Eq. (20) has at most p number of solutions, i.e., we can find an
injective function thatmaps A toN. Now consider any element Ã ∈

A. We claim that the set of values Ã(Ã) = {αJ
| Aj(α

J) = Ã, αJ
∈

RJ
} has measure zero in RJ because Ã is at most a subset of the

vector space of RJ−1. By construction, we have AC
= ∪Ã∈A Ã(Ã) =

∪Ã∈A{αJ
| Aj(α

J) = Ã, αJ
∈ RJ

}. Finally we conclude that the set
AC has measure zero in RJ because a countable union of measure
zero sets has measure zero, as Ã(Ã) has measure zero for all Ã ∈ A
and the set A is countable. This completes the proof.

Remark 18. Although it is not necessary,we can simplify our proof
when αj = 0 for all j, i.e., all goods are symmetric. The condition
of nonzero derivatives is obtained using the rational zero test. In
this case we have Aj = J and note that the coefficient on Ap−1

j (the

highest order term in the equation) in (20) is equal to γ
(p+1)
p = 1

for all p. Also note that the constant term (the coefficient on A0
j in

(20)), γ (p+1)
1 , is equal to 1 when p is odd and is equal to −1 when p

is even. By the rational zero test, this implies that the only possible
positive rational number solution in (20), if any, is J = 1 for all
p ≥ 1, so obviously the setAC hasmeasure zero (in RJ ) or is empty
if J ≥ 2.
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