Preliminaries

Instructor: Simon Grant, BB252, ph 3332, email: sgrant@rice.edu

Time and location: MWF 9-10:15, BB271

Office hours: Monday 1-3pm, BB252

Other useful texts:

Preliminaries cont.

Assessment:

There will be (almost) weekly problem sets.
And mid-term and final examinations.

Exams will count toward the grade as follows.

<table>
<thead>
<tr>
<th>Date</th>
<th>Midterm</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 10</td>
<td>30%</td>
<td>Dec 15</td>
</tr>
</tbody>
</table>

Problem Sets:

Handed out on Monday.
Due Wednesday week.

Topics

1. Consumer Theory and Demand (4 weeks)
2. Choice under Uncertainty (2 weeks)
3. Production and Cost (2 weeks)
4. Partial Equilibrium Analysis (2 week)
Q. What do economists study? What do they do?

Explain phenomena

e.g. Why does baseball union dislike revenue sharing?

Predict phenomena

e.g. What will happen to pharmaceutical company as patent expires

Evaluate phenomena

e.g. What are the welfare consequences of prescription drug plan?

Key unit of analysis = individuals

"methodological individualism"

Could do others

– classes (sociology)
– multiple selves (psychology)

key explanation method \(\equiv\) rational choice model
Q. What do economists study? What do they do?

- Jack & Jill preferred chance of getting water (even at risk of falling down and breaking their crowns).
- Alternatively:- explain observation via ‘behavioral’ non-rational model → irrational urge to go up the hill!!!

Put individual choice together: aggregate

- competitive environments
- strategic environments

If we put almost no structure on model of preference (say just some ordering \succ)

Then model predicts little

- too few restrictions on data
- hard to falsify; hard to predict

As add structure on model of preferences e.g. \succ comes from maximization of a utility fn of a particular form.

Then TRADE OFF

- good news: estimate parameters of utility fn
 - make prediction tighter, assess welfare
- bad news: might be too restrictive/ wrong restrictions i.e. falsified.
Main Lesson

1. What kind of structure on \(\succsim \) model

\[\iff \text{what kind of phenomena in data} \]

2. What kind of structure is ‘useful’?

A. Depends on kinds of data available/questions we want to address

sometimes data \(\rightarrow \) structure we are forced to assume

Theory of Rational Choice

data = choice correspondence

\(X = \) set of objects/alternatives

Formally, I observe “Budget Sets” \(B \), from which agents choose.

e.g. \{apple, pear, lemon\}

And I observe choice \(c(B) \subseteq B \).
Theory of Rational Choice

Let B be set of budgets I see agent choose from.

$$\text{data} = (B, c(\cdot))$$

Assume $c(B) \neq \emptyset$ (i.e. agent always chooses something).

Explanation = Preference relation, \preceq, on X

$x \succeq y : x$ is weakly preferred to y

$x \succ y : x$ is strictly preferred to y (i.e. $x \succeq y$ AND NOT($y \succeq x$))

$x \sim y : x$ is indifferent to y (i.e. $x \succeq y$ AND $y \succeq x$)

Only structure on \preceq

- completeness: for all x, y in $X : x \succ y$ OR $y \succ x$ (or both)
- transitivity: if $x \succeq y$ AND $y \succeq z$ then $x \succeq z$.

What does explaining ‘choice’ by ‘preference’ mean?

The choice data $(B, c(\cdot))$ is explained by the rational \preceq if for each choice problem B in B

$$c(B) = \{x \in B : x \succeq y \text{ for all } y \text{ in } B\}.$$

I.e. $c(B) =$ set of most preferred elements of B.

Questions

What has to be true of choice data for there to exist a rational \preceq that explains it?

Can the rational choice model be falsified?

Can we predict anything at all?
Suppose \(x \) was chosen when \(y \) was available: i.e. \(x, y \) in \(B \) and \(x \in c(B) \).

Then we say “\(x \) is weakly revealed preferred to \(y \)” (or \(x \ wrp \ y \))

If in addition, \(y \) was not chosen, i.e. \(y \notin c(B) \),

Then we say ““\(x \) is strictly revealed preferred to \(y \)” (or \(x \ srp \ y \))

CLAIM The following property of the data \((B, c(\cdot))\) is necessary for it to be explained by a rational \(\succeq \).

WARP If \(x \) weakly revealed preferred to \(y \) in some (observed) choice problem then \(y \) cannot be strictly revealed preferred to \(x \) in some other (observed) choice problem.

Amazing Fact

If our data is rich enough (it includes all subsets of \(X \) with three or fewer elements) then **WARP** is **sufficient** for data to be explained by a rational \(\succeq \).

Q. Why do we need rich data?

A. More data \(\Rightarrow \) **WARP** is more of a restriction.

Usually don’t have enough data!

\(\Rightarrow \) need a stronger ‘transitivity’ requirement \([SARP]\)

Example: \(X = \{x, y, z\}, \ B = \{\{x, y\}, \{y, z\}, \{x, z\}\}, \ c(\{x, y\}) = x, \ c(\{y, z\}) = y \ and \ c(\{x, z\}) = z, \)

satisfies **WARP** but violates transitivity.
Special Case: Consumer Theory

\[X = \mathbb{R}_+^l, \ B = \text{linear budget sets } (p, w) \left\{ x \in \mathbb{R}_+^l : p.x \leq w \right\} \]

\(c(B) = x(p, w) \) demand function.

For now assume

1. \(x(p, w) \) is unique
2. \(x(p, w) \) is on budget line (i.e. \(p.x(p, w) = \sum_{\ell} p_{\ell}x_{\ell} = w \).

CLAIM
WARP implies compensated demand curves slope down.

See picture for intuition.

N.B. Downward sloping compensated demand only requires minimal structural assumptions.

Welfare Analysis

Suppose we compare US “standard of living” with other countries.

One approach: compare per capita GDP at PPP exchange rate.

Pblm: relative prices differ across countries, hence consumption vectors vary
e.g. housing cheap in Australia, expensive in Holland.

Another approach: use WARP.

Assume

1. each country has a representative consumer
2. same preferences in each country
Welfare Analysis

Ask:
1. Could country i (representative) consumer have afforded to consume country j's bundle?

2. Could country j (representative) consumer have afforded to consume country i's bundle?

If (Yes, No) then i's bundle RP to j'

If (No, No) then no comparison.

If (Yes, Yes) then contradicts underlying assumptions.

References:

