Forecasting Using Econometric and Atheoretical Time Series Models

Consider estimating and then forecasting out-of-sample the annual consumption of chicken in the United States. The data (1951-1997) are:

Y = per capita chicken consumption (in pounds)
PC = the price of chicken (in cents per pound)
PB = the price of beef (in cents per pound)
YD = U. S. per capita disposable income (in hundreds of dollars).

You can find the data (chick6.wf1) at:

http://occawlonline.pearsoned.com/bookbind/pubbooks/studenmun d_awl/chapter1/deluxe.html

We wish to compare out-of-sample forecasts of the demand for chicken using econometric models and using methods that do not use any economic structure, only statistical treatments.

1. OLS

- a. unconditional forecasts: $\hat{Y}_{t+1} = X_t \hat{b}$
- b. conditional forecasts: $\hat{Y}_{t+1} = \hat{X}_t \hat{b}$

2. GLS

With an AR(1) error $(\mathbf{e}_t = \mathbf{r}\mathbf{e}_{t-1} + u_t)$ and using a simple regression model $(Y_t = \mathbf{b}_0 + \mathbf{b}_1 X_t + \mathbf{e}_t)$ the gls forecast is:

$$\hat{Y}_{t+1} = \hat{\boldsymbol{r}} Y_t + \hat{\boldsymbol{b}}_0 (1 - \hat{\boldsymbol{r}}) + \hat{\boldsymbol{b}}_1 (\hat{X}_{t+1} - \hat{\boldsymbol{r}} X_t)$$

3. Forecasting confidence intervals

A 95% confidence interval is approximately

 $[\hat{Y}_{t+1} \pm 2s_F]$

4. Forecasting with simultaneous systems

Typically uses simulation methods.

5. Forecasting with ARIMA(p,d,q) models

 $Y_{t} = \boldsymbol{b}_{0} + \boldsymbol{q}_{1}Y_{t-1} + \dots + \boldsymbol{q}_{p}Y_{t-p} + \boldsymbol{e}_{t} + \boldsymbol{f}_{1}\boldsymbol{e}_{t-1} + \dots + \boldsymbol{f}_{q}\boldsymbol{e}_{t-q}$

The first part is the AR process, the second the MA process and the original series is differenced d times to achieve stationarity (detrend).